login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351078
First noncomposite number reached when iterating the map x -> x', when starting from x = n, or 0 if no such number is ever reached. Here x' is the arithmetic derivative of x, A003415.
6
0, 1, 2, 3, 0, 5, 5, 7, 0, 5, 7, 11, 0, 13, 5, 0, 0, 17, 7, 19, 0, 7, 13, 23, 0, 7, 0, 0, 0, 29, 31, 31, 0, 5, 19, 0, 0, 37, 7, 0, 0, 41, 41, 43, 0, 0, 7, 47, 0, 5, 0, 0, 0, 53, 0, 0, 0, 13, 31, 59, 0, 61, 5, 0, 0, 7, 61, 67, 0, 0, 59, 71, 0, 73, 0, 0, 0, 7, 71, 79, 0, 0, 43, 83, 0, 13, 0, 0, 0, 89, 0, 0, 0, 19, 5
OFFSET
0,3
COMMENTS
Primes of A189483 occur only once, on the corresponding indices, while A189441 may also occur in other positions.
There are interesting white "filament-like regions" in the scatter plot.
LINKS
FORMULA
For all n, a(4*n) = a(27*n) = a((p^p)*n) = a(A099309(n)) = 0.
a(p) = p for all primes p.
EXAMPLE
For n = 15, if we iterate with A003415, we get a path 15 -> 8 -> 12 -> 16 -> 32 -> 80 -> 176 -> 368 -> ..., where the terms just keep on growing without ever reaching a prime or 1, therefore a(15) = 0.
For n = 18, its path down to zero, when iterating A003415 is: 18 -> 21 -> 10 -> 7 -> 1 -> 0, and the first noncomposite term on the path is prime 7, therefore a(18) = 7.
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A351078(n) = { while(n>1&&!isprime(n), n = A003415checked(n)); (n); };
CROSSREFS
Cf. A099309 (positions of zeros after the initial one at a(0)=0), A328115 (positions of 5's), A328117 (positions of 7's).
Cf. also A327968.
Sequence in context: A265513 A140508 A063956 * A128214 A307865 A219695
KEYWORD
nonn,look
AUTHOR
Antti Karttunen, Feb 11 2022
STATUS
approved