login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351079
a(n) is the largest term encountered on the path from n to 0 when iterating the map x -> x', or 0 if 0 cannot be reached from n (or if n is 0). Here x' is the arithmetic derivative of x, A003415.
6
0, 1, 2, 3, 0, 5, 6, 7, 0, 9, 10, 11, 0, 13, 14, 0, 0, 17, 21, 19, 0, 21, 22, 23, 0, 25, 0, 0, 0, 29, 31, 31, 0, 33, 34, 0, 0, 37, 38, 0, 0, 41, 42, 43, 0, 0, 46, 47, 0, 49, 0, 0, 0, 53, 0, 0, 0, 57, 58, 59, 0, 61, 62, 0, 0, 65, 66, 67, 0, 0, 70, 71, 0, 73, 0, 0, 0, 77, 78, 79, 0, 0, 82, 83, 0, 85, 0, 0, 0, 89
OFFSET
0,3
COMMENTS
Question: Is there any good upper bound for ratio a(n)/n? See also comments in A351261.
LINKS
FORMULA
For n > 0, a(n) = 0 if A099307(n) = 0, otherwise a(n) = max(n, a(A003415(n))).
a(0) = 0 and a(A099309(n)) = 0 for all n.
EXAMPLE
For n = 15, if we iterate with A003415, we get a path 15 -> 8 -> 12 -> 16 -> 32 -> 80 -> 176 -> 368 -> ..., where the terms just keep on growing without ever reaching zero, therefore a(15) = 0.
For n = 18, its path down to zero, when iterating A003415 is: 18 -> 21 -> 10 -> 7 -> 1 -> 0, and the largest term is 21, therefore a(18) = 21.
PROG
(PARI)
A003415checked(n) = if(n<=1, 0, my(f=factor(n), s=0); for(i=1, #f~, if(f[i, 2]>=f[i, 1], return(0), s += f[i, 2]/f[i, 1])); (n*s));
A351079(n) = { my(m=n); while(n>1, n = A003415checked(n); m = max(m, n)); if(n, m); };
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 11 2022
STATUS
approved