OFFSET
1,2
COMMENTS
Denote the k-th derivative of n by d(n,k). We know that we can stop taking derivatives if either d(n,k) = 0 or d(n,k) has a factor of the form p^p for prime p. In the latter case, the derivatives will stay constant or grow without bound.
REFERENCES
See A003415
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[k=0; d=n; done=False; While[If[d==1, done=True, f=FactorInteger[d]; Do[If[f[[i, 1]]<=f[[i, 2]], done=True], {i, Length[f]}]]; !done, k++; d=dn[d]]; If[d==1, k+1, 0], {n, 200}]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 12 2004
STATUS
approved