OFFSET
1,2
COMMENTS
Observe that when n and c*n have the same parity, a(c*n) >= a(n) for all integers c. For even n, there are always at least two solutions, k=n/2 and k=2n. For odd n, k=2n is always a solution.
REFERENCES
See A003415
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[lst={}; k=0; While[k<2n, k++; While[k<=2n && dn[n]+dn[k] != dn[n+k], k++ ]; If[dn[n]+dn[k]==dn[n+k], AppendTo[lst, k]]]; Length[lst], {n, 100}]
PROG
(Haskell)
a099305 n = a099305_list !! (n-1)
a099305_list = f 1 $ h 1 empty where
f x ad = y : f (x + 1) (h (3 * x + 1) ad) where
y = length [() | k <- [1 .. 2 * x],
let x' = ad ! x, ad ! (x + k) == x' + ad ! k]
h z = insert z (a003415 z) .
insert (z+1) (a003415 (z+1)) . insert (z+2) (a003415 (z+2))
-- Reinhard Zumkeller, May 21 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 12 2004
STATUS
approved