login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099305
Number of solutions of the equation (n+k)' = n' + k', with 1 <= k <= 2n, where n' denotes the arithmetic derivative of n.
4
1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 1, 3, 1, 3, 1, 2, 2, 2, 1, 3, 1, 3, 1, 2, 3, 3, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2, 2, 1, 3, 3, 3, 1, 2, 2, 3, 2
OFFSET
1,2
COMMENTS
Observe that when n and c*n have the same parity, a(c*n) >= a(n) for all integers c. For even n, there are always at least two solutions, k=n/2 and k=2n. For odd n, k=2n is always a solution.
a(A258138(n)) = n and a(m) != n for m < A258138(n). - Reinhard Zumkeller, May 21 2015
REFERENCES
LINKS
MATHEMATICA
dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[lst={}; k=0; While[k<2n, k++; While[k<=2n && dn[n]+dn[k] != dn[n+k], k++ ]; If[dn[n]+dn[k]==dn[n+k], AppendTo[lst, k]]]; Length[lst], {n, 100}]
PROG
(Haskell)
a099305 n = a099305_list !! (n-1)
a099305_list = f 1 $ h 1 empty where
f x ad = y : f (x + 1) (h (3 * x + 1) ad) where
y = length [() | k <- [1 .. 2 * x],
let x' = ad ! x, ad ! (x + k) == x' + ad ! k]
h z = insert z (a003415 z) .
insert (z+1) (a003415 (z+1)) . insert (z+2) (a003415 (z+2))
-- Reinhard Zumkeller, May 21 2015
CROSSREFS
Cf. A003415 (arithmetic derivative of n), A099304 (least k > 0 such that (n+k)' = n' + k').
Cf. A258138.
Sequence in context: A086435 A266226 A376885 * A334461 A338652 A033109
KEYWORD
nonn
AUTHOR
T. D. Noe, Oct 12 2004
STATUS
approved