login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A334461
a(n) is the number of partitions of n into consecutive parts that differ by 4.
11
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 2, 3, 1, 3, 1, 3, 3, 2, 1, 4, 1, 3, 2, 3, 1, 3, 2, 3, 2, 2, 1, 5, 1, 2, 2, 3, 2, 4, 1, 3, 2, 3, 1, 5, 1, 2, 3, 3, 1, 4, 1, 4, 2, 2, 1, 5, 2, 2, 2, 3, 1, 5, 2, 3, 2, 2, 2, 5, 1, 3, 2, 4, 1, 4, 1, 3, 4
OFFSET
1,6
LINKS
FORMULA
The g.f. for "consecutive parts that differ by d" is Sum_{k>=1} x^(k*(d*k-d+2)/2) / (1-x^k); cf. A117277. - Joerg Arndt, Nov 30 2020
EXAMPLE
For n = 28 there are three partitions of 28 into consecutive parts that differ by 4, including 28 as a valid partition. They are [28], [16, 12] and [13, 9, 5, 1]. So a(28) = 3.
MATHEMATICA
nmax = 105;
col[k_] := col[k] = CoefficientList[Sum[x^(n(k n - k + 2)/2 - 1)/(1 - x^n), {n, 1, nmax}] + O[x]^nmax, x];
a[n_] := col[4][[n]];
Array[a, nmax] (* Jean-François Alcover, Nov 30 2020 *)
Table[Sum[If[n > 2*k*(k-1), 1, 0], {k, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 22 2024 *)
PROG
(PARI) seq(N, d)=my(x='x+O('x^N)); Vec(sum(k=1, N, x^(k*(d*k-d+2)/2)/(1-x^k)));
seq(100, 4) \\ Joerg Arndt, May 05 2020
CROSSREFS
Row sums of A334460.
Column k=4 of A323345.
Sequences of this family whose consecutive parts differ by k are A000005 (k=0), A001227 (k=1), A038548 (k=2), A117277 (k=3), this sequence (k=4), A334541 (k=5), A334948 (k=6).
Sequence in context: A266226 A376885 A099305 * A338652 A033109 A321469
KEYWORD
nonn
AUTHOR
Omar E. Pol, May 01 2020
STATUS
approved