

A334460


Irregular triangle read by rows: T(n,k) is the number of partitions of n into k consecutive parts that differ by 4, and the first element of column k is in the row that is the kth hexagonal number (A000384).


10



1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1


COMMENTS

T(n,k) is 0 or 1, so T(n,k) represents the "existence" of the mentioned partition: 1 = exists, 0 = does not exist.
Since the trivial partition n is counted, so T(n,1) = 1.
This is an irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists 1's interleaved with k1 zeros, and the first element of column k is in the row that is the kth hexagonal number.
This triangle can be represented with a diagram of overlapping curves, in which every column of triangle is represented by a periodic curve.
For a general theorem about the triangles of this family see A303300.


LINKS



EXAMPLE

Triangle begins (rows 1..28):
1;
1;
1;
1;
1;
1, 1;
1, 0;
1, 1;
1, 0;
1, 1;
1, 0;
1, 1;
1, 0;
1, 1;
1, 0, 1;
1, 1, 0;
1, 0, 0;
1, 1, 1;
1, 0, 0;
1, 1, 0;
1, 0, 1;
1, 1, 0;
1, 0, 0;
1, 1, 1;
1, 0, 0;
1, 1, 0;
1, 0, 1;
1, 1, 0, 1;
...
For n = 28 there are three partitions of 28 into consecutive parts that differ by 4, including 28 as a partition. They are [28], [16, 12] and [13, 9, 5, 1]. The number of parts of these partitions are 1, 2, 4 respectively. There are no partitions of this kind with three parts, so the 28th row of the triangle is [1, 1, 0, 1].


MAPLE

local first1 ;
if n < first1 then
0 ;
elif modp(nfirst1, k) = 0 then
1;
else
0;
end if;
end proc:
for n from 1 to 40 do
for k from 1 do
else
break;
end if;
end do:
printf("\n") ;


CROSSREFS

Triangles of the same family where the parts differ by d are A051731 (d=0), A237048 (d=1), A303300 (d=2), A330887 (d=3), this sequence (d=4).


KEYWORD

nonn,tabf


AUTHOR



STATUS

approved



