|
|
A351824
|
|
Irregular triangle read by rows: T(n,k) is the number of partitions of n into 2*k-1 consecutive parts, n >= 1, k >= 1. Column k lists 1's interleaved with 2*k-2 zeros, and the first element of column k is in row A000384(k).
|
|
6
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1
|
|
COMMENTS
|
Conjecture 1: T(n,k) is the number of subparts, in an octant of the symmetric representation of sigma(n), that arises from the (2*k-1)-th double-staircase of the double-staircases diagram of n described in A335616.
For the above conjectures see also the "ziggurat" diagram described in A347186.
This triangle is formed by the odd-indexed columns of the triangle A237048.
Terms can be 0 or 1.
|
|
LINKS
|
|
|
FORMULA
|
T(n,k) = [(2*k-1)|n], where 1 <= k <= floor((sqrt(8*n+1)+1)/4) and [] is the Iverson bracket. - Paolo Xausa, Apr 01 2023
|
|
EXAMPLE
|
Triangle begins:
-----------------------
n / k 1 2 3 4
-----------------------
1 | 1;
2 | 1;
3 | 1;
4 | 1;
5 | 1;
6 | 1, 1;
7 | 1, 0;
8 | 1, 0;
9 | 1, 1;
10 | 1, 0;
11 | 1, 0;
12 | 1, 1;
13 | 1, 0;
14 | 1, 0;
15 | 1, 1, 1;
16 | 1, 0, 0;
17 | 1, 0, 0;
18 | 1, 1, 0;
19 | 1, 0, 0;
20 | 1, 0, 1;
21 | 1, 1, 0;
22 | 1, 0, 0;
23 | 1, 0, 0;
24 | 1, 1, 0;
25 | 1, 0, 1;
26 | 1, 0, 0;
27 | 1, 1, 0;
28 | 1, 0, 0, 1;
...
For n = 15 the partitions of 15 into an odd number of consecutive parts are [15], [6, 5, 4] and [5, 4, 3, 2, 1]. There are a partition with only one part, a partition with three parts and a partition with five parts, so the 15th row of triangle is [1, 1, 1].
|
|
MATHEMATICA
|
A351824[rowmax_]:=Table[Boole[Divisible[n, 2k-1]], {n, rowmax}, {k, Floor[(Sqrt[8n+1]+1)/4]}]; A351824[50] (* Paolo Xausa, Apr 01 2023 *)
|
|
CROSSREFS
|
Cf. A000384, A196020, A235791, A236104, A237048, A237270, A237271, A237591, A237593, A244250, A262619, A262626, A279387, A280850, A280851, A286000, A286001, A296508, A299765, A335616, A347186, A347263, A347529, A348854, A351819, A352257, A352499.
|
|
KEYWORD
|
nonn,tabf,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|