login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A351824 Irregular triangle read by rows: T(n,k) is the number of partitions of n into 2*k-1 consecutive parts, n >= 1, k >= 1. Column k lists 1's interleaved with 2*k-2 zeros, and the first element of column k is in row A000384(k). 6
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1
COMMENTS
Conjecture 1: T(n,k) is the number of subparts, in an octant of the symmetric representation of sigma(n), that arises from the (2*k-1)-th double-staircase of the double-staircases diagram of n described in A335616.
Conjecture 2: Indices of 1's coincide with indices of nonzero terms in A347263, A347529, A351819.
For the above conjectures see also the "ziggurat" diagram described in A347186.
This triangle is formed by the odd-indexed columns of the triangle A237048.
Terms can be 0 or 1.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10490 (rows 1..800 of triangle, flattened).
FORMULA
T(n,k) = A352499(n,k)/n. - Omar E. Pol, Mar 24 2022
T(n,k) = [(2*k-1)|n], where 1 <= k <= floor((sqrt(8*n+1)+1)/4) and [] is the Iverson bracket. - Paolo Xausa, Apr 01 2023
EXAMPLE
Triangle begins:
-----------------------
n / k 1 2 3 4
-----------------------
1 | 1;
2 | 1;
3 | 1;
4 | 1;
5 | 1;
6 | 1, 1;
7 | 1, 0;
8 | 1, 0;
9 | 1, 1;
10 | 1, 0;
11 | 1, 0;
12 | 1, 1;
13 | 1, 0;
14 | 1, 0;
15 | 1, 1, 1;
16 | 1, 0, 0;
17 | 1, 0, 0;
18 | 1, 1, 0;
19 | 1, 0, 0;
20 | 1, 0, 1;
21 | 1, 1, 0;
22 | 1, 0, 0;
23 | 1, 0, 0;
24 | 1, 1, 0;
25 | 1, 0, 1;
26 | 1, 0, 0;
27 | 1, 1, 0;
28 | 1, 0, 0, 1;
...
For n = 15 the partitions of 15 into an odd number of consecutive parts are [15], [6, 5, 4] and [5, 4, 3, 2, 1]. There are a partition with only one part, a partition with three parts and a partition with five parts, so the 15th row of triangle is [1, 1, 1].
MATHEMATICA
A351824[rowmax_]:=Table[Boole[Divisible[n, 2k-1]], {n, rowmax}, {k, Floor[(Sqrt[8n+1]+1)/4]}]; A351824[50] (* Paolo Xausa, Apr 01 2023 *)
CROSSREFS
Row sums give A082647.
Row n has length A351846(n).
Sequence in context: A248863 A328306 A267256 * A365605 A365716 A334460
KEYWORD
nonn,tabf,easy
AUTHOR
Omar E. Pol, Feb 20 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 11 17:54 EDT 2024. Contains 375839 sequences. (Running on oeis4.)