login
A351824
Irregular triangle read by rows: T(n,k) is the number of partitions of n into 2*k-1 consecutive parts, n >= 1, k >= 1. Column k lists 1's interleaved with 2*k-2 zeros, and the first element of column k is in row A000384(k).
6
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0
OFFSET
1
COMMENTS
Conjecture 1: T(n,k) is the number of subparts, in an octant of the symmetric representation of sigma(n), that arises from the (2*k-1)-th double-staircase of the double-staircases diagram of n described in A335616.
Conjecture 2: Indices of 1's coincide with indices of nonzero terms in A347263, A347529, A351819.
For the above conjectures see also the "ziggurat" diagram described in A347186.
This triangle is formed by the odd-indexed columns of the triangle A237048.
Terms can be 0 or 1.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10490 (rows 1..800 of triangle, flattened).
FORMULA
T(n,k) = A352499(n,k)/n. - Omar E. Pol, Mar 24 2022
T(n,k) = [(2*k-1)|n], where 1 <= k <= floor((sqrt(8*n+1)+1)/4) and [] is the Iverson bracket. - Paolo Xausa, Apr 01 2023
EXAMPLE
Triangle begins:
-----------------------
n / k 1 2 3 4
-----------------------
1 | 1;
2 | 1;
3 | 1;
4 | 1;
5 | 1;
6 | 1, 1;
7 | 1, 0;
8 | 1, 0;
9 | 1, 1;
10 | 1, 0;
11 | 1, 0;
12 | 1, 1;
13 | 1, 0;
14 | 1, 0;
15 | 1, 1, 1;
16 | 1, 0, 0;
17 | 1, 0, 0;
18 | 1, 1, 0;
19 | 1, 0, 0;
20 | 1, 0, 1;
21 | 1, 1, 0;
22 | 1, 0, 0;
23 | 1, 0, 0;
24 | 1, 1, 0;
25 | 1, 0, 1;
26 | 1, 0, 0;
27 | 1, 1, 0;
28 | 1, 0, 0, 1;
...
For n = 15 the partitions of 15 into an odd number of consecutive parts are [15], [6, 5, 4] and [5, 4, 3, 2, 1]. There are a partition with only one part, a partition with three parts and a partition with five parts, so the 15th row of triangle is [1, 1, 1].
MATHEMATICA
A351824[rowmax_]:=Table[Boole[Divisible[n, 2k-1]], {n, rowmax}, {k, Floor[(Sqrt[8n+1]+1)/4]}]; A351824[50] (* Paolo Xausa, Apr 01 2023 *)
KEYWORD
nonn,tabf,easy
AUTHOR
Omar E. Pol, Feb 20 2022
STATUS
approved