OFFSET
1
COMMENTS
Conjecture 1: T(n,k) is the number of subparts, in an octant of the symmetric representation of sigma(n), that arises from the (2*k-1)-th double-staircase of the double-staircases diagram of n described in A335616.
For the above conjectures see also the "ziggurat" diagram described in A347186.
This triangle is formed by the odd-indexed columns of the triangle A237048.
Terms can be 0 or 1.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..10490 (rows 1..800 of triangle, flattened).
FORMULA
T(n,k) = A352499(n,k)/n. - Omar E. Pol, Mar 24 2022
T(n,k) = [(2*k-1)|n], where 1 <= k <= floor((sqrt(8*n+1)+1)/4) and [] is the Iverson bracket. - Paolo Xausa, Apr 01 2023
EXAMPLE
Triangle begins:
-----------------------
n / k 1 2 3 4
-----------------------
1 | 1;
2 | 1;
3 | 1;
4 | 1;
5 | 1;
6 | 1, 1;
7 | 1, 0;
8 | 1, 0;
9 | 1, 1;
10 | 1, 0;
11 | 1, 0;
12 | 1, 1;
13 | 1, 0;
14 | 1, 0;
15 | 1, 1, 1;
16 | 1, 0, 0;
17 | 1, 0, 0;
18 | 1, 1, 0;
19 | 1, 0, 0;
20 | 1, 0, 1;
21 | 1, 1, 0;
22 | 1, 0, 0;
23 | 1, 0, 0;
24 | 1, 1, 0;
25 | 1, 0, 1;
26 | 1, 0, 0;
27 | 1, 1, 0;
28 | 1, 0, 0, 1;
...
For n = 15 the partitions of 15 into an odd number of consecutive parts are [15], [6, 5, 4] and [5, 4, 3, 2, 1]. There are a partition with only one part, a partition with three parts and a partition with five parts, so the 15th row of triangle is [1, 1, 1].
MATHEMATICA
A351824[rowmax_]:=Table[Boole[Divisible[n, 2k-1]], {n, rowmax}, {k, Floor[(Sqrt[8n+1]+1)/4]}]; A351824[50] (* Paolo Xausa, Apr 01 2023 *)
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Omar E. Pol, Feb 20 2022
STATUS
approved