OFFSET
1,6
COMMENTS
Number of ways to write n as the sum of an odd number of consecutive integers. - Vladeta Jovovic, Aug 28 2007
Number of odd divisors of n less than sqrt(2*n). - Vladeta Jovovic, Sep 16 2007
Conjecture: a(n) is also the number of subparts in an octant of the symmetric representation of sigma(n). - Omar E. Pol, Feb 22 2017
LINKS
Peter Kagey, Table of n, a(n) for n = 1..10000
M. D. Hirschhorn and P. M. Hirschhorn, Partitions into Consecutive Parts, Mathematics Magazine: 2003, Volume 76, Number 4, pp. 306-308.
William Lowell Putnam Competition, Function A(k) in Problem B6, 2015.
FORMULA
G.f.: Sum_{k>0} x^(k*(2*k-1))/(1-x^(2*k-1)). - Vladeta Jovovic, Aug 25 2004
EXAMPLE
For n=6: 6 has two ways -- (d=3; 3|6), 1+2+3=6; and (d=1; 1|6), 6=6 -- so a(6)=2.
MAPLE
N:= 1000: # to get a(1) to a(N)
g:= add(x^(k*(2*k-1))/(1-x^(2*k-1)), k=1..floor(sqrt(N/2))):
S:= series(g, x, N+1):
seq(coeff(S, x, n), n=1..N); # Robert Israel, Dec 08 2015
PROG
(PARI) a(n) = my(q = sqrt(2*n)); sumdiv(n, d, (d%2) && (d < q)); \\ Michel Marcus, Jul 04 2014
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, May 15 2003
STATUS
approved