This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A131576 Number of ways to represent n as sum of even number of consecutive integers. 13
 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 0, 2, 1, 1, 1, 1, 1, 2, 0, 2, 1, 1, 1, 2, 1, 1, 0, 1, 1, 3, 1, 1, 2, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 1, 2, 0, 1, 1, 2, 1, 1, 2, 1, 0, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,21 COMMENTS Number of odd divisors of n greater than sqrt(2*n). Conjecture: a(n) is also the number of pairs of equidistant subparts in the symmetric representation of sigma(n). (Cf. A279387). - Omar E. Pol, Feb 22 2017 Indices of nonzero terms give A281005. - Omar E. Pol, Mar 04 2018 LINKS M. D. Hirschhorn and P. M. Hirschhorn, Partitions into Consecutive Parts, Mathematics Magazine: 2003, Volume 76, Number 4, Pages: 306-308. FORMULA G.f.: Sum_{k>1} x^(k*(2*k+1))/(1-x^(2*k)). a(A000040(i))=1 for i=1,2,3,... a(A000079(j))=0 for j=0,1,2,3,... - R. J. Mathar, Sep 13 2007 Conjectures: a(n) = (A001227(n) - A067742(n))/2 = A001227(n) - A082647(n) = A082647(n) - A067742(n). - Omar E. Pol, Feb 22 2017 EXAMPLE a(11)=1 because we have 11=5+6; a(21)=2 because we have 21=10+11=1+2+3+4+5+6; a(75)=3 because we have 75=37+38=10+11+12+13+14+15=3+4+5+6+7+8+9+10+11+12. MAPLE G:=sum(x^(k*(2*k+1))/(1-x^(2*k)), k=1..10): Gser:=series(G, x=0, 85): seq(coeff(Gser, x, n), n=1..80); # Emeric Deutsch, Sep 08 2007 A131576 := proc(n) local dvs, a, k, r; dvs := numtheory[divisors](n) ; a := 0 ; for k in dvs do r := n/k+1 ; if r mod 2 = 0 then if r/2-k >= 1 then a := a+1 ; fi ; fi ; od: RETURN(a) ; end: seq(A131576(n), n=1..120) ; # R. J. Mathar, Sep 13 2007 MATHEMATICA With[{m = 105}, Rest@ CoefficientList[Series[Sum[x^(k (2 k + 1))/(1 - x^(2 k)), {k, m}], {x, 0, m}], x]] (* Michael De Vlieger, Mar 04 2018 *) CROSSREFS Cf. A082647, A001227, A237593. Sequence in context: A302234 A026920 A060763 * A100073 A257988 A075685 Adjacent sequences:  A131573 A131574 A131575 * A131577 A131578 A131579 KEYWORD easy,nonn AUTHOR Vladeta Jovovic, Aug 28 2007, Sep 16 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 21 15:03 EST 2018. Contains 317449 sequences. (Running on oeis4.)