login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131574
Numbers n that are the product of two distinct odd primes and x^2 + y^2 = n has integer solutions.
9
65, 85, 145, 185, 205, 221, 265, 305, 365, 377, 445, 481, 485, 493, 505, 533, 545, 565, 629, 685, 689, 697, 745, 785, 793, 865, 901, 905, 949, 965, 985, 1037, 1073, 1145, 1157, 1165, 1189, 1205, 1241, 1261, 1285, 1313, 1345, 1385, 1405, 1417, 1465, 1469
OFFSET
1,1
COMMENTS
The two primes are of the form 4*k + 1.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..10000 (first 1000 terms from Colin Barker)
EXAMPLE
65 is in the sequence because x^2 + y^2 = 65 = 5*13 has solutions (x,y) = (1,8), (4,7), (7,4) and (8,1).
PROG
(PARI)
dop(d, nmax) = {
my(L=List(), v=vector(d, m, 1)~, f);
for(n=1, nmax,
f=factorint(n);
if(#f~==d && f[1, 1]>2 && f[, 2]==v && f[, 1]%4==v, listput(L, n))
);
Vec(L)
}
dop(2, 3000) \\ Colin Barker, Nov 15 2015
KEYWORD
nonn
AUTHOR
Colin Barker, Aug 28 2007, corrected Aug 29 2007
STATUS
approved