|
|
A248649
|
|
Numbers n that are the product of three distinct primes such that x^2+y^2 = n has integer solutions.
|
|
3
|
|
|
130, 170, 290, 370, 410, 442, 530, 610, 730, 754, 890, 962, 970, 986, 1010, 1066, 1090, 1105, 1130, 1258, 1370, 1378, 1394, 1490, 1570, 1586, 1730, 1802, 1810, 1885, 1898, 1930, 1970, 2074, 2146, 2290, 2314, 2330, 2378, 2405, 2410, 2465, 2482, 2522, 2570
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Union of 2*A131574 and A264498. - Ray Chandler, Dec 09 2019
|
|
LINKS
|
Ray Chandler, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
130 is in the sequence because 130 = 2*5*13, and x^2+y^2=130 has integer solutions (x,y) = (3,11) and (7,9).
1105 is in the sequence because x^2 + y^2 = 1105 = 5*13*17 has solutions (x,y) = (4,33), (9,32), (12,31) and (23,24).
|
|
CROSSREFS
|
Cf. A131574, A264498, A248712.
Sequence in context: A252362 A331629 A248943 * A050238 A115937 A298381
Adjacent sequences: A248646 A248647 A248648 * A248650 A248651 A248652
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Colin Barker, Oct 12 2014
|
|
STATUS
|
approved
|
|
|
|