login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A365833
Triprimes a such that, if b is the next triprime, a + b and b - a are also triprimes.
2
130, 195, 222, 292, 498, 582, 670, 814, 970, 1362, 1398, 1534, 1645, 1813, 1834, 1978, 2514, 2717, 2853, 2865, 2994, 3092, 3130, 3157, 3211, 3462, 3897, 4527, 4615, 4707, 4782, 5529, 6070, 6610, 7270, 7399, 7414, 7527, 7767, 8029, 8305, 8687, 8911, 9994, 10330, 10390, 11297, 11557, 11619, 11679
OFFSET
1,1
COMMENTS
It appears that in most cases b - a = 8.
LINKS
EXAMPLE
a(3) = 222 ix a term because 222 = 2*3*37 is a triprime, the next triprime is 230 = 2 5 * 23, and 222 + 230 = 452 = 2^2 * 113 and 230 - 222 = 8 = 2^3 are triprimes.
MAPLE
with(priqueue);
a:= 8: R:= NULL: count:= 0:
initialize(triprimes);
insert([-8, 0, 2], triprimes);
while count < 50 do
v:= extract(triprimes);
if v[2] = 3 then
b:= -v[1];
if numtheory:-bigomega(b-a) = 3 and numtheory:-bigomega(b+a)=3 then
R:= R, a; count:= count+1
fi;
a:= b;
else
insert(v+[0, 1, 0], triprimes);
q:= nextprime(v[3]);
w:= v[1]*(q/v[3])^(3-v[2]);
insert([w, v[2], q], triprimes)
fi
od:
R;
MATHEMATICA
Select[Partition[Select[Range[12000], PrimeOmega[#] == 3 &], 2, 1], AllTrue[{#1 + #2, #2 - #1}, PrimeOmega[#] == 3 &] & @@ # &][[All, 1]] (* Michael De Vlieger, Sep 20 2023 *)
CROSSREFS
Cf. A014612.
Sequence in context: A248649 A050238 A115937 * A298381 A299248 A299457
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Sep 19 2023
STATUS
approved