OFFSET
0,19
EXAMPLE
The partition (7,6,1) has sums 1, 6, 7, 8, 13, 14, so is counted under T(14,6).
Triangle begins:
1
0 1
0 1 0
0 1 0 1
0 1 0 1 0
0 1 0 2 0 0
0 1 0 2 0 0 1
0 1 0 3 0 0 0 1
0 1 0 3 0 0 1 1 0
0 1 0 4 0 0 0 3 0 0
0 1 0 4 0 0 2 2 0 0 1
0 1 0 5 0 0 0 5 0 0 0 1
0 1 0 5 0 0 2 5 0 0 0 0 2
0 1 0 6 0 0 0 8 0 0 0 1 0 2
0 1 0 6 0 0 3 7 0 0 0 0 3 1 1
0 1 0 7 0 0 0 12 0 0 0 1 0 4 0 2
0 1 0 7 0 0 3 11 0 0 0 1 3 2 2 1 1
0 1 0 8 0 0 0 16 0 0 0 1 0 7 0 3 0 2
0 1 0 8 0 0 4 15 0 0 0 1 3 3 6 2 0 0 3
0 1 0 9 0 0 0 21 0 0 0 2 0 9 0 7 0 1 0 4
0 1 0 9 0 0 4 20 0 0 1 0 4 8 5 5 0 0 2 0 5
Row n = 14 counts the following partitions (A..E = 10..14):
(E) . (D1) . . (761) (B21) . . . . (6521) (8321) (7421)
(C2) (752) (A31) (6431)
(B3) (743) (941) (5432)
(A4) (932)
(95) (851)
(86) (842)
(653)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Length[Union[Total/@Rest[Subsets[#]]]]==k&]], {n, 0, 15}, {k, 0, n}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Sep 28 2023
STATUS
approved