login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364916
Array read by antidiagonals downwards where A(n,k) is the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of k.
35
1, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 1, 1, 1, 0, 3, 1, 2, 0, 1, 0, 4, 1, 1, 3, 1, 1, 0, 5, 2, 2, 2, 3, 0, 1, 0, 6, 2, 4, 2, 3, 3, 1, 1, 0, 8, 3, 4, 4, 3, 2, 5, 0, 1, 0, 10, 3, 5, 4, 7, 4, 3, 4, 1, 1, 0, 12, 5, 6, 6, 7, 7, 4, 3, 5, 0, 1, 0, 15, 5, 9, 7, 8, 6, 12, 3, 4, 6, 1, 1, 0
OFFSET
0,7
COMMENTS
A way of writing n as a (nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
As a triangle, also the number of ways to write n as a *positive* linear combination of the parts of a strict integer partition of k.
LINKS
EXAMPLE
Array begins:
1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27
0 1 0 1 1 1 2 2 3 3 5 5 7 8 10 12
0 1 1 2 1 2 4 4 5 6 9 10 13 15 19 23
0 1 0 3 2 2 4 4 6 7 11 11 15 17 22 27
0 1 1 3 3 3 7 7 8 10 16 17 23 27 33 42
0 1 0 3 2 4 7 6 9 9 17 17 23 26 33 43
0 1 1 5 3 4 12 10 13 16 26 27 36 42 52 68
0 1 0 4 3 3 10 11 13 13 27 25 35 40 51 67
0 1 1 5 4 5 15 13 19 20 36 37 51 58 72 97
0 1 0 6 4 5 14 13 18 23 42 39 54 61 78 105
0 1 1 6 4 6 20 17 23 25 54 50 69 80 98 138
0 1 0 6 4 5 19 16 23 24 54 55 71 80 103 144
0 1 1 8 6 7 27 23 30 35 72 70 103 113 139 199
0 1 0 7 5 6 24 21 29 31 75 68 95 115 139 201
0 1 1 8 5 7 31 27 36 39 90 86 122 137 178 255
0 1 0 9 6 8 31 27 38 42 100 93 129 148 187 289
Triangle begins:
1
1 0
1 1 0
2 0 1 0
2 1 1 1 0
3 1 2 0 1 0
4 1 1 3 1 1 0
5 2 2 2 3 0 1 0
6 2 4 2 3 3 1 1 0
8 3 4 4 3 2 5 0 1 0
10 3 5 4 7 4 3 4 1 1 0
12 5 6 6 7 7 4 3 5 0 1 0
15 5 9 7 8 6 12 3 4 6 1 1 0
18 7 10 11 10 9 10 10 5 4 6 0 1 0
22 8 13 11 16 9 13 11 15 5 4 6 1 1 0
27 10 15 15 17 17 16 13 13 14 6 4 8 0 1 0
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
t[n_, k_]:=Length[Join@@Table[combs[n, ptn], {ptn, Select[IntegerPartitions[k], UnsameQ@@#&]}]];
Table[t[k, n-k], {n, 0, 15}, {k, 0, n}]
CROSSREFS
Same as A116861 with offset 0 and rows reversed, non-strict version A364912.
Row n = 0 is A000009.
Row n = 1 is A096765.
Row n = 2 is A365005.
Column k = 0 is A000007.
Column k = 1 is A000012.
Column k = 2 is A000035.
Column k = 3 is A137719.
The main diagonal is A364910.
Left half has row sums A365002.
For not just strict partitions we have A365004, diagonal A364907.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A066328 adds up distinct prime indices.
A364350 counts combination-free strict partitions, complement A364839.
Sequence in context: A086372 A342003 A339737 * A365923 A089650 A085513
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 17 2023
STATUS
approved