OFFSET
0,4
COMMENTS
Also the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500 (first 91 terms from David A. Corneth)
EXAMPLE
The a(0) = 1 through a(7) = 11 partitions:
() (11) (22) (33) (44) (55) (66) (77)
(2211) (3311) (3322) (4422) (4433)
(21111) (311111) (4411) (5511) (5522)
(4111111) (33321) (6611)
(42222) (442211)
(322221) (4222211)
(332211) (4421111)
(3222111) (42221111)
(3321111) (422111111)
(32211111) (611111111)
(51111111) (4211111111)
(321111111)
The a(0) = 1 through a(7) = 11 linear combinations:
0 1*1 1*2 1*3 1*4 1*5 1*6 1*7
0*2+3*1 0*3+4*1 0*4+5*1 0*4+3*2 0*6+7*1
1*2+1*1 1*3+1*1 1*3+1*2 0*5+6*1 1*4+1*3
1*4+1*1 1*4+1*2 1*5+1*2
1*5+1*1 1*6+1*1
0*3+0*2+6*1 0*4+0*2+7*1
0*3+1*2+4*1 0*4+1*2+5*1
0*3+2*2+2*1 0*4+2*2+3*1
0*3+3*2+0*1 0*4+3*2+1*1
1*3+0*2+3*1 1*4+0*2+3*1
1*3+1*2+1*1 1*4+1*2+1*1
2*3+0*2+0*1
MATHEMATICA
Table[Length[Select[IntegerPartitions[2n], Total[Union[#]]==n&]], {n, 0, 15}]
PROG
(PARI) a(n) = {my(res = 0); forpart(p = 2*n, s = Set(p); if(vecsum(s) == n, res++)); res} \\ David A. Corneth, Aug 20 2023
(Python)
from sympy.utilities.iterables import partitions
def A364910(n): return sum(1 for d in partitions(n<<1, k=n) if sum(set(d))==n) # Chai Wah Wu, Sep 13 2023
CROSSREFS
The case with no zero coefficients is A000009.
Central diagonal of A116861.
A version based on Heinz numbers is A364906.
Using all partitions (not just strict) we get A364907.
Main diagonal of A364916.
Using strict partitions of any number from 1 to n gives A365002.
These partitions have ranks A365003.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 16 2023
EXTENSIONS
More terms from David A. Corneth, Aug 20 2023
STATUS
approved