login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A364910
Number of integer partitions of 2n whose distinct parts sum to n.
18
1, 1, 1, 3, 3, 4, 12, 11, 19, 23, 54, 55, 103, 115, 178, 289, 389, 507, 757, 970, 1343, 2033, 2579, 3481, 4840, 6312, 8317, 10998, 15459, 19334, 26368, 33480, 44709, 56838, 74878, 93369, 128109, 157024, 206471, 258357, 338085, 417530, 544263, 669388, 859570, 1082758, 1367068
OFFSET
0,4
COMMENTS
Also the number of ways to write n as a nonnegative linear combination of the parts of a strict integer partition of n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..500 (first 91 terms from David A. Corneth)
FORMULA
a(n) = A116861(2n,n).
a(n) = A364916(n,n).
EXAMPLE
The a(0) = 1 through a(7) = 11 partitions:
() (11) (22) (33) (44) (55) (66) (77)
(2211) (3311) (3322) (4422) (4433)
(21111) (311111) (4411) (5511) (5522)
(4111111) (33321) (6611)
(42222) (442211)
(322221) (4222211)
(332211) (4421111)
(3222111) (42221111)
(3321111) (422111111)
(32211111) (611111111)
(51111111) (4211111111)
(321111111)
The a(0) = 1 through a(7) = 11 linear combinations:
0 1*1 1*2 1*3 1*4 1*5 1*6 1*7
0*2+3*1 0*3+4*1 0*4+5*1 0*4+3*2 0*6+7*1
1*2+1*1 1*3+1*1 1*3+1*2 0*5+6*1 1*4+1*3
1*4+1*1 1*4+1*2 1*5+1*2
1*5+1*1 1*6+1*1
0*3+0*2+6*1 0*4+0*2+7*1
0*3+1*2+4*1 0*4+1*2+5*1
0*3+2*2+2*1 0*4+2*2+3*1
0*3+3*2+0*1 0*4+3*2+1*1
1*3+0*2+3*1 1*4+0*2+3*1
1*3+1*2+1*1 1*4+1*2+1*1
2*3+0*2+0*1
MATHEMATICA
Table[Length[Select[IntegerPartitions[2n], Total[Union[#]]==n&]], {n, 0, 15}]
PROG
(PARI) a(n) = {my(res = 0); forpart(p = 2*n, s = Set(p); if(vecsum(s) == n, res++)); res} \\ David A. Corneth, Aug 20 2023
(Python)
from sympy.utilities.iterables import partitions
def A364910(n): return sum(1 for d in partitions(n<<1, k=n) if sum(set(d))==n) # Chai Wah Wu, Sep 13 2023
CROSSREFS
The case with no zero coefficients is A000009.
Central diagonal of A116861.
A version based on Heinz numbers is A364906.
Using all partitions (not just strict) we get A364907.
The version for compositions is A364908, strict A364909.
Main diagonal of A364916.
Using strict partitions of any number from 1 to n gives A365002.
These partitions have ranks A365003.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
Sequence in context: A178043 A049925 A362107 * A291873 A118114 A366555
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 16 2023
EXTENSIONS
More terms from David A. Corneth, Aug 20 2023
STATUS
approved