OFFSET
0,7
EXAMPLE
For y = (4,3,2) we can write 4 = 0*3 + 2*2, so y is counted under a(9).
For y = (11,5,3) we can write 11 = 1*5 + 2*3, so y is counted under a(19).
For y = (17,5,4,3) we can write 17 = 1*3 + 1*4 + 2*5, so y is counted under a(29).
The a(1) = 0 through a(12) = 12 strict partitions (A = 10, B = 11):
. . (21) (31) (41) (42) (61) (62) (63) (82) (A1) (84)
(51) (421) (71) (81) (91) (542) (93)
(321) (431) (432) (532) (632) (A2)
(521) (531) (541) (641) (B1)
(621) (631) (731) (642)
(721) (821) (651)
(4321) (5321) (732)
(741)
(831)
(921)
(5421)
(6321)
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Or@@Table[combs[#[[k]], Delete[#, k]]!={}, {k, Length[#]}]&]], {n, 0, 15}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A364839(n):
if n <= 1: return 0
alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 0
for p in partitions(n, k=n-1):
if max(p.values(), default=0)==1:
s = set(p)
if any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
c += 1
return c # Chai Wah Wu, Sep 23 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 19 2023
STATUS
approved