|
|
A236912
|
|
Number of partitions of n such that no part is a sum of two other parts.
|
|
49
|
|
|
1, 1, 2, 3, 4, 6, 8, 12, 14, 20, 25, 34, 40, 54, 64, 85, 98, 127, 149, 189, 219, 277, 316, 395, 456, 557, 638, 778, 889, 1070, 1226, 1461, 1667, 1978, 2250, 2645, 3019, 3521, 3997, 4652, 5267, 6093, 6909, 7943, 8982, 10291, 11609, 13251, 14947, 16984, 19104
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
These are partitions containing the sum of no 2-element submultiset of the parts, a variation of binary sum-free partitions where parts cannot be re-used, ranked by A364461. The complement is counted by A237113. The non-binary version is A237667. For re-usable parts we have A364345. - Gus Wiseman, Aug 09 2023
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 11 - 3 = 8.
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(311) (222) (322) (71)
(11111) (411) (331) (332)
(3111) (421) (521)
(111111) (511) (611)
(2221) (2222)
(4111) (3311)
(31111) (5111)
(1111111) (41111)
(311111)
(11111111)
(End)
|
|
MATHEMATICA
|
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Total/@Subsets[#, {2}]]=={}&]], {n, 0, 15}] (* Gus Wiseman, Aug 09 2023 *)
|
|
CROSSREFS
|
The (strict) version for linear combinations of parts is A364350.
These partitions have ranks A364461.
|
|
KEYWORD
|
nonn,changed
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|