The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A236913 Number of partitions of 2n of type EE (see Comments). 49
 1, 1, 3, 6, 12, 22, 40, 69, 118, 195, 317, 505, 793, 1224, 1867, 2811, 4186, 6168, 9005, 13026, 18692, 26613, 37619, 52815, 73680, 102162, 140853, 193144, 263490, 357699, 483338, 650196, 870953, 1161916, 1544048, 2044188, 2696627, 3545015, 4644850, 6066425 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The partitions of n are partitioned into four types: EO, even # of odd parts and odd # of even parts, A236559; OE, odd # of odd parts and even # of even parts, A160786; EE, even # of odd parts and even # of even parts, A236913; OO, odd # of odd parts and odd # of even parts, A236914. A236559 and A160786 are the bisections of A027193; A236913 and A236914 are the bisections of A027187. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 EXAMPLE The partitions of 4 of type EE are [3,1], [2,2], [1,1,1,1], so that a(2) = 3. type/k . 1 .. 2 .. 3 .. 4 .. 5 .. 6 .. 7 .. 8 ... 9 ... 10 .. 11 EO ..... 0 .. 1 .. 0 .. 2 .. 0 .. 5 .. 0 .. 10 .. 0 ... 20 .. 0 OE ..... 1 .. 0 .. 2 .. 0 .. 4 .. 0 .. 8 .. 0 ... 16 .. 0 ... 29 EE ..... 0 .. 1 .. 0 .. 3 .. 0 .. 6 .. 0 .. 12 .. 0 ... 22 .. 0 OO ..... 0 .. 0 .. 1 .. 0 .. 3 .. 0 .. 7 .. 0 ... 14 .. 0 ... 27 From Gus Wiseman, Feb 09 2021: (Start) This sequence counts even-length partitions of even numbers, which have Heinz numbers given by A340784. For example, the a(0) = 1 through a(4) = 12 partitions are: () (11) (22) (33) (44) (31) (42) (53) (1111) (51) (62) (2211) (71) (3111) (2222) (111111) (3221) (3311) (4211) (5111) (221111) (311111) (11111111) (End) MAPLE b:= proc(n, i) option remember; `if`(n=0, [1, 0\$3], `if`(i<1, [0\$4], b(n, i-1)+`if`(i>n, [0\$4], (p-> `if`(irem(i, 2)=0, [p[3], p[4], p[1], p[2]], [p[2], p[1], p[4], p[3]]))(b(n-i, i))))) end: a:= n-> b(2*n\$2)[1]: seq(a(n), n=0..40); # Alois P. Heinz, Feb 16 2014 MATHEMATICA z = 25; m1 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m2 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]]; m3 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 #]]], EvenQ[(*Odd*)First[#]] && EvenQ[(*Even*)Last[#]] &]] &, Range[z]] ; m4 = Map[Length[Select[Map[{Count[#, True], Count[#, False]} &, OddQ[IntegerPartitions[2 # - 1]]], OddQ[(*Odd*)First[#]] && OddQ[(*Even*)Last[#]] &]] &, Range[z]]; m1 (* A236559, type EO*) m2 (* A160786, type OE*) m3 (* A236913, type EE*) m4 (* A236914, type OO*) (* Peter J. C. Moses, Feb 03 2014 *) b[n_, i_] := b[n, i] = If[n == 0, {1, 0, 0, 0}, If[i < 1, {0, 0, 0, 0}, b[n, i - 1] + If[i > n, {0, 0, 0, 0}, Function[p, If[Mod[i, 2] == 0, p[[{3, 4, 1, 2}]], p[[{2, 1, 4, 3}]]]][b[n - i, i]]]]]; a[n_] := b[2*n, 2*n][[1]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Oct 27 2015, after Alois P. Heinz *) Table[Length[Select[IntegerPartitions[2n], EvenQ[Length[#]]&]], {n, 0, 15}] (* Gus Wiseman, Feb 09 2021 *) CROSSREFS Cf. A000041, A027193, A236559, A236914. Note: A-numbers of ranking sequences are in parentheses below. The ordered version is A000302. The case of odd-length partitions of odd numbers is A160786 (A340931). The Heinz numbers of these partitions are (A340784). A027187 counts partitions of even length/maximum (A028260/A244990). A034008 counts compositions of even length. A035363 counts partitions into even parts (A066207). A047993 counts balanced partitions (A106529). A058695 counts partitions of odd numbers (A300063). A058696 counts partitions of even numbers (A300061). A067661 counts strict partitions of even length (A030229). A072233 counts partitions by sum and length. A339846 counts factorizations of even length. A340601 counts partitions of even rank (A340602). A340785 counts factorizations into even factors. A340786 counts even-length factorizations into even factors. Sequence in context: A066982 A246597 A179906 * A288348 A018078 A005404 Adjacent sequences: A236910 A236911 A236912 * A236914 A236915 A236916 KEYWORD nonn,easy AUTHOR Clark Kimberling, Feb 01 2014 EXTENSIONS More terms from Alois P. Heinz, Feb 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 2 02:58 EDT 2023. Contains 365831 sequences. (Running on oeis4.)