OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This is a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The sequence of terms together with the corresponding partitions begins:
2: (1) 50: (3,3,1) 109: (29)
5: (3) 59: (17) 110: (5,3,1)
8: (1,1,1) 67: (19) 114: (8,2,1)
11: (5) 68: (7,1,1) 124: (11,1,1)
17: (7) 72: (2,2,1,1,1) 125: (3,3,3)
18: (2,2,1) 73: (21) 127: (31)
20: (3,1,1) 78: (6,2,1) 128: (1,1,1,1,1,1,1)
23: (9) 80: (3,1,1,1,1) 137: (33)
31: (11) 83: (23) 149: (35)
32: (1,1,1,1,1) 92: (9,1,1) 153: (7,2,2)
41: (13) 97: (25) 157: (37)
42: (4,2,1) 98: (4,4,1) 162: (2,2,2,2,1)
44: (5,1,1) 99: (5,2,2) 164: (13,1,1)
45: (3,2,2) 103: (27) 167: (39)
47: (15) 105: (4,3,2) 168: (4,2,1,1,1)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], OddQ[PrimeOmega[#]]&&OddQ[Total[primeMS[#]]]&]
CROSSREFS
Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A160786.
The case of where the prime indices are also odd is A300272.
A001222 counts prime factors.
A056239 adds up prime indices.
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 05 2021
STATUS
approved