login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Heinz numbers of integer partitions of odd numbers into an odd number of parts.
11

%I #5 Feb 07 2021 19:43:35

%S 2,5,8,11,17,18,20,23,31,32,41,42,44,45,47,50,59,67,68,72,73,78,80,83,

%T 92,97,98,99,103,105,109,110,114,124,125,127,128,137,149,153,157,162,

%U 164,167,168,170,174,176,179,180,182,188,191,195,197,200,207,211

%N Heinz numbers of integer partitions of odd numbers into an odd number of parts.

%C The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This is a bijective correspondence between positive integers and integer partitions.

%F Intersection of A026424 and A300063.

%e The sequence of terms together with the corresponding partitions begins:

%e 2: (1) 50: (3,3,1) 109: (29)

%e 5: (3) 59: (17) 110: (5,3,1)

%e 8: (1,1,1) 67: (19) 114: (8,2,1)

%e 11: (5) 68: (7,1,1) 124: (11,1,1)

%e 17: (7) 72: (2,2,1,1,1) 125: (3,3,3)

%e 18: (2,2,1) 73: (21) 127: (31)

%e 20: (3,1,1) 78: (6,2,1) 128: (1,1,1,1,1,1,1)

%e 23: (9) 80: (3,1,1,1,1) 137: (33)

%e 31: (11) 83: (23) 149: (35)

%e 32: (1,1,1,1,1) 92: (9,1,1) 153: (7,2,2)

%e 41: (13) 97: (25) 157: (37)

%e 42: (4,2,1) 98: (4,4,1) 162: (2,2,2,2,1)

%e 44: (5,1,1) 99: (5,2,2) 164: (13,1,1)

%e 45: (3,2,2) 103: (27) 167: (39)

%e 47: (15) 105: (4,3,2) 168: (4,2,1,1,1)

%t primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];

%t Select[Range[100],OddQ[PrimeOmega[#]]&&OddQ[Total[primeMS[#]]]&]

%Y Note: A-numbers of Heinz-number sequences are in parentheses below.

%Y These partitions are counted by A160786.

%Y The even version is A236913 (A340784).

%Y The case of where the prime indices are also odd is A300272.

%Y A000009 counts partitions into odd parts (A066208).

%Y A001222 counts prime factors.

%Y A027193 counts odd-length partitions (A026424).

%Y A047993 counts balanced partitions (A106529).

%Y A056239 adds up prime indices.

%Y A058695 counts partitions of odd numbers (A300063).

%Y A072233 counts partitions by sum and length.

%Y A112798 lists the prime indices of each positive integer.

%Y Cf. A000041, A316413, A326845, A340385, A340386, A340387, A340604, A340607, A340854, A340855.

%K nonn

%O 1,1

%A _Gus Wiseman_, Feb 05 2021