login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340934 Triangle of coefficients in g.f. A(x,y) which satisfies: A(x,y) = Sum_{n>=0} x^n/(1 - x*y*A(x,y)^(2*n)). 2
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 8, 13, 8, 1, 1, 21, 51, 51, 21, 1, 1, 55, 187, 268, 187, 55, 1, 1, 144, 662, 1277, 1277, 662, 144, 1, 1, 377, 2291, 5719, 7611, 5719, 2291, 377, 1, 1, 987, 7808, 24550, 41593, 41593, 24550, 7808, 987, 1, 1, 2584, 26353, 102299, 214085, 271091 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,8

LINKS

Table of n, a(n) for n=0..60.

FORMULA

G.f. A(x,y) satisfies:

(1) A(x,y) = Sum_{n>=0} x^n/(1 - x*y*A(x,y)^(2*n)).

(2) A(x,y) = Sum_{n>=0} x^n*y^n/(1 - x*A(x,y)^(2*n)).

(3) A(x*y, 1/y) = A(x, y).

EXAMPLE

G.f.: A(x,y) = 1 + (1 + y)*x + (1 + y + y^2)*x^2 + (1 + 3*y + 3*y^2 + y^3)*x^3 + (1 + 8*y + 13*y^2 + 8*y^3 + y^4)*x^4 + (1 + 21*y + 51*y^2 + 51*y^3 + 21*y^4 + y^5)*x^5 + (1 + 55*y + 187*y^2 + 268*y^3 + 187*y^4 + 55*y^5 + y^6)*x^6 + ...

where A(x,y) satisfies:

A(x,y) = Sum_{n>=0} x^n/(1 - x*y*A(x,y)^(2*n)),

also

A(x,y) = Sum_{n>=0} x^n*y^n/(1 - x*A(x,y)^(2*n)).

TRIANGLE.

This triangle of coefficients T(n,k) of x^n*y^k in A(x,y) begins

1;

1, 1;

1, 1, 1;

1, 3, 3, 1;

1, 8, 13, 8, 1;

1, 21, 51, 51, 21, 1;

1, 55, 187, 268, 187, 55, 1;

1, 144, 662, 1277, 1277, 662, 144, 1;

1, 377, 2291, 5719, 7611, 5719, 2291, 377, 1;

1, 987, 7808, 24550, 41593, 41593, 24550, 7808, 987, 1;

1, 2584, 26353, 102299, 214085, 271091, 214085, 102299, 26353, 2584, 1;

1, 6765, 88477, 417543, 1055893, 1638186, 1638186, 1055893, 417543, 88477, 6765, 1;

1, 17711, 296546, 1680731, 5050791, 9377929, 11458077, 9377929, 5050791, 1680731, 296546, 17711, 1; ...

PROG

(PARI) {T(n, k) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m/(1 - x*y*A^(2*m) +x*O(x^n))) ); polcoeff(polcoeff(A, n, x), k, y)}

for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))

(PARI) {T(n, k) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m*y^m/(1 - x*A^(2*m) +x*O(x^n))) ); polcoeff(polcoeff(A, n, x), k, y)}

for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))

CROSSREFS

Cf. A340935, A340936, A340910.

Sequence in context: A287981 A213660 A099037 * A271706 A172108 A220666

Adjacent sequences:  A340931 A340932 A340933 * A340935 A340936 A340937

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jan 28 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 18 04:22 EDT 2021. Contains 347508 sequences. (Running on oeis4.)