OFFSET
0,8
FORMULA
G.f. A(x,y) satisfies:
(1) A(x,y) = Sum_{n>=0} x^n/(1 - x*y*A(x,y)^(2*n)).
(2) A(x,y) = Sum_{n>=0} x^n*y^n/(1 - x*A(x,y)^(2*n)).
(3) A(x*y, 1/y) = A(x, y).
EXAMPLE
G.f.: A(x,y) = 1 + (1 + y)*x + (1 + y + y^2)*x^2 + (1 + 3*y + 3*y^2 + y^3)*x^3 + (1 + 8*y + 13*y^2 + 8*y^3 + y^4)*x^4 + (1 + 21*y + 51*y^2 + 51*y^3 + 21*y^4 + y^5)*x^5 + (1 + 55*y + 187*y^2 + 268*y^3 + 187*y^4 + 55*y^5 + y^6)*x^6 + ...
where A(x,y) satisfies:
A(x,y) = Sum_{n>=0} x^n/(1 - x*y*A(x,y)^(2*n)),
also
A(x,y) = Sum_{n>=0} x^n*y^n/(1 - x*A(x,y)^(2*n)).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y) begins
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 8, 13, 8, 1;
1, 21, 51, 51, 21, 1;
1, 55, 187, 268, 187, 55, 1;
1, 144, 662, 1277, 1277, 662, 144, 1;
1, 377, 2291, 5719, 7611, 5719, 2291, 377, 1;
1, 987, 7808, 24550, 41593, 41593, 24550, 7808, 987, 1;
1, 2584, 26353, 102299, 214085, 271091, 214085, 102299, 26353, 2584, 1;
1, 6765, 88477, 417543, 1055893, 1638186, 1638186, 1055893, 417543, 88477, 6765, 1;
1, 17711, 296546, 1680731, 5050791, 9377929, 11458077, 9377929, 5050791, 1680731, 296546, 17711, 1; ...
PROG
(PARI) {T(n, k) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m/(1 - x*y*A^(2*m) +x*O(x^n))) ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) {T(n, k) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m*y^m/(1 - x*A^(2*m) +x*O(x^n))) ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2021
STATUS
approved