login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340934
Triangle of coefficients in g.f. A(x,y) which satisfies: A(x,y) = Sum_{n>=0} x^n/(1 - x*y*A(x,y)^(2*n)).
2
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 8, 13, 8, 1, 1, 21, 51, 51, 21, 1, 1, 55, 187, 268, 187, 55, 1, 1, 144, 662, 1277, 1277, 662, 144, 1, 1, 377, 2291, 5719, 7611, 5719, 2291, 377, 1, 1, 987, 7808, 24550, 41593, 41593, 24550, 7808, 987, 1, 1, 2584, 26353, 102299, 214085, 271091
OFFSET
0,8
FORMULA
G.f. A(x,y) satisfies:
(1) A(x,y) = Sum_{n>=0} x^n/(1 - x*y*A(x,y)^(2*n)).
(2) A(x,y) = Sum_{n>=0} x^n*y^n/(1 - x*A(x,y)^(2*n)).
(3) A(x*y, 1/y) = A(x, y).
EXAMPLE
G.f.: A(x,y) = 1 + (1 + y)*x + (1 + y + y^2)*x^2 + (1 + 3*y + 3*y^2 + y^3)*x^3 + (1 + 8*y + 13*y^2 + 8*y^3 + y^4)*x^4 + (1 + 21*y + 51*y^2 + 51*y^3 + 21*y^4 + y^5)*x^5 + (1 + 55*y + 187*y^2 + 268*y^3 + 187*y^4 + 55*y^5 + y^6)*x^6 + ...
where A(x,y) satisfies:
A(x,y) = Sum_{n>=0} x^n/(1 - x*y*A(x,y)^(2*n)),
also
A(x,y) = Sum_{n>=0} x^n*y^n/(1 - x*A(x,y)^(2*n)).
TRIANGLE.
This triangle of coefficients T(n,k) of x^n*y^k in A(x,y) begins
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 8, 13, 8, 1;
1, 21, 51, 51, 21, 1;
1, 55, 187, 268, 187, 55, 1;
1, 144, 662, 1277, 1277, 662, 144, 1;
1, 377, 2291, 5719, 7611, 5719, 2291, 377, 1;
1, 987, 7808, 24550, 41593, 41593, 24550, 7808, 987, 1;
1, 2584, 26353, 102299, 214085, 271091, 214085, 102299, 26353, 2584, 1;
1, 6765, 88477, 417543, 1055893, 1638186, 1638186, 1055893, 417543, 88477, 6765, 1;
1, 17711, 296546, 1680731, 5050791, 9377929, 11458077, 9377929, 5050791, 1680731, 296546, 17711, 1; ...
PROG
(PARI) {T(n, k) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m/(1 - x*y*A^(2*m) +x*O(x^n))) ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
(PARI) {T(n, k) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m*y^m/(1 - x*A^(2*m) +x*O(x^n))) ); polcoeff(polcoeff(A, n, x), k, y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2021
STATUS
approved