login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340935
G.f. A(x) satisfies: A(x) = Sum_{n>=0} x^n/(1 - x*A(x)^(2*n)).
1
1, 2, 3, 8, 31, 146, 754, 4168, 24387, 149878, 961735, 6413730, 44305495, 316289264, 2329690081, 17685913364, 138276568051, 1112831978494, 9214885055084, 78482008660596, 687242245179732, 6184901074959982, 57179080181866903, 542740440965244192
OFFSET
0,2
COMMENTS
Equals row sums of triangle A340934.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 8*x^3 + 31*x^4 + 146*x^5 + 754*x^6 + 4168*x^7 + 24387*x^8 + 149878*x^9 + 961735*x^10 + 6413730*x^11 + 44305495*x^12 + ...
where
A(x) = 1/(1-x) + x/(1 - x*A(x)) + x^2/(1 - x*A(x)^2) + x^3/(1 - x*A(x)^3) + x^4/(1 - x*A(x)^4) + x^5/(1 - x*A(x)^5) + ...
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = sum(m=0, n, x^m/(1 - x*A^(2*m) +x*O(x^n))) ); polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A340934.
Sequence in context: A072042 A372711 A160586 * A162074 A162052 A082569
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 28 2021
STATUS
approved