The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340938 E.g.f. A(x) satisfies: Sum_{n>=0} x^n * exp(x*A(x)^n) / n! = exp(x*A(x) + x/A(x)). 1
 1, 1, 2, 12, 96, 1120, 16260, 290640, 6108480, 148353408, 4081855680, 125613124560, 4274457264000, 159409774592640, 6465790781049600, 283412493387223200, 13350812617606464000, 672683432660494295040, 36100038651180773068800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS EXAMPLE E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 96*x^4/4! + 1120*x^5/5! + 16260*x^6/6! + 290640*x^7/7! + 6108480*x^8/8! + 148353408*x^9/9! + ... where exp(x*A(x) + x/A(x)) = exp(x) + x*exp(x*A(x)) + x^2*exp(x*A(x)^2)/2! + x^3*exp(x*A(x)^3)/3! + x^4*exp(x*A(x)^4)/4! + x^5*exp(x*A(x)^5)/5! +... explicitly, exp(x*A(x) + x/A(x)) = 1 + 2*x + 4*x^2/2! + 14*x^3/3! + 88*x^4/4! + 872*x^5/5! + 11464*x^6/6! + 189968*x^7/7! + 3774208*x^8/8! + 87674336*x^9/9! + ... exp(x*A(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 97*x^4/4! + 981*x^5/5! + 13291*x^6/6! + 222013*x^7/7! + 4458273*x^8/8! + 104169817*x^9/9! + ... PROG (PARI) {a(n) = my(A=1+x +x^3*O(x^n), H=A); for(k=1, n, A = A*exp(-x*A)*exp(-x/A) * sum(m=0, n+3, x^m/m! * exp(x*A^m +x^3*O(x^n)) ); A = truncate( H + polcoeff(A, k+2)*x^k ) +x^3*O(x^n); H=A); n!*polcoeff(W=A, n)} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A340941, A340939. Sequence in context: A206855 A219119 A052611 * A059864 A095338 A308820 Adjacent sequences:  A340935 A340936 A340937 * A340939 A340940 A340941 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 08 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 11:39 EDT 2021. Contains 344992 sequences. (Running on oeis4.)