The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A340938 E.g.f. A(x) satisfies: Sum_{n>=0} x^n * exp(x*A(x)^n) / n! = exp(x*A(x) + x/A(x)). 1

%I

%S 1,1,2,12,96,1120,16260,290640,6108480,148353408,4081855680,

%T 125613124560,4274457264000,159409774592640,6465790781049600,

%U 283412493387223200,13350812617606464000,672683432660494295040,36100038651180773068800

%N E.g.f. A(x) satisfies: Sum_{n>=0} x^n * exp(x*A(x)^n) / n! = exp(x*A(x) + x/A(x)).

%e E.g.f.: A(x) = 1 + x + 2*x^2/2! + 12*x^3/3! + 96*x^4/4! + 1120*x^5/5! + 16260*x^6/6! + 290640*x^7/7! + 6108480*x^8/8! + 148353408*x^9/9! + ...

%e where

%e exp(x*A(x) + x/A(x)) = exp(x) + x*exp(x*A(x)) + x^2*exp(x*A(x)^2)/2! + x^3*exp(x*A(x)^3)/3! + x^4*exp(x*A(x)^4)/4! + x^5*exp(x*A(x)^5)/5! +...

%e explicitly,

%e exp(x*A(x) + x/A(x)) = 1 + 2*x + 4*x^2/2! + 14*x^3/3! + 88*x^4/4! + 872*x^5/5! + 11464*x^6/6! + 189968*x^7/7! + 3774208*x^8/8! + 87674336*x^9/9! + ...

%e exp(x*A(x)) = 1 + x + 3*x^2/2! + 13*x^3/3! + 97*x^4/4! + 981*x^5/5! + 13291*x^6/6! + 222013*x^7/7! + 4458273*x^8/8! + 104169817*x^9/9! + ...

%o (PARI) {a(n) = my(A=1+x +x^3*O(x^n), H=A);

%o for(k=1, n, A = A*exp(-x*A)*exp(-x/A) * sum(m=0, n+3, x^m/m! * exp(x*A^m +x^3*O(x^n)) );

%o A = truncate( H + polcoeff(A, k+2)*x^k ) +x^3*O(x^n); H=A); n!*polcoeff(W=A, n)}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A340941, A340939.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 08 2021

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 29 22:13 EDT 2021. Contains 346346 sequences. (Running on oeis4.)