login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172108
Triangle T_4(n, m), the number of surjective multi-valued functions from {1, 1, 1, 1, 2, 3, ..., n-3} to {1, 2, 3, ..., m} by rows (n >= 1, 1 <= m <= n).
4
0, 0, 0, 0, 0, 0, 1, 3, 3, 1, 1, 8, 18, 16, 5, 1, 18, 78, 136, 105, 30, 1, 38, 288, 856, 1205, 810, 210, 1, 78, 978, 4576, 10305, 12090, 7140, 1680, 1, 158, 3168, 22216, 74405, 134370, 134610, 70560, 15120, 1, 318, 9978, 101536, 483105, 1252650, 1882860, 1641360, 771120, 151200
OFFSET
1,8
COMMENTS
T_4(1, m) = T_4(2, m) = T_4(3, m) = 0 by definition. T_4(n, m) also gives the number of ordered partitions of {1, 1, 1, 1, 2, 3, ..., n-3} into exactly m parts.
FORMULA
T_4(n, m) = Sum_{j=0..m} binomial(m,j)*binomial(j+3,4)*(-1)^(m-j)*j^(n-4), for n >= 4, with T(n, k) = 0 for n < 4.
Sum_{k=1.n} T_4(n, k) = A172111(n).
Sum_{k=1..n} (-1)^k*T_4(n, k) = 0. - G. C. Greubel, Apr 14 2022
EXAMPLE
Triangle begins as:
0;
0, 0;
0, 0, 0;
1, 3, 3, 1;
1, 8, 18, 16, 5;
1, 18, 78, 136, 105, 30;
1, 38, 288, 856, 1205, 810, 210;
1, 78, 978, 4576, 10305, 12090, 7140, 1680;
1, 158, 3168, 22216, 74405, 134370, 134610, 70560, 15120;
1, 318, 9978, 101536, 483105, 1252650, 1882860, 1641360, 771120, 151200;
MATHEMATICA
f[r_, n_, m_]:= Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l, m}]; For[n = 4, n <= 10, n++, Print[Table[f[4, n, m], {m, 1, n}]]]
PROG
(Magma)
T:= func< n, k, m | n lt 4 select 0 else (&+[(-1)^(k+j)*Binomial(k, j)*Binomial(j+m-1, m)*j^(n-m): j in [1..k]]) >;
[T(n, k, 4): k in [1..n], n in [1..12]]; // G. C. Greubel, Apr 14 2022
(SageMath)
def T(n, k, m):
if (n<4): return 0
else: return sum( (-1)^(k-j)*binomial(k, j)*binomial(j+m-1, m)*j^(n-m) for j in (1..k) )
flatten([[T(n, k, 4) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Apr 14 2022
CROSSREFS
This is related to A019538, A172106 and A172107.
Row sums give A172111.
Sequence in context: A099037 A340934 A271706 * A220666 A104378 A176344
KEYWORD
nonn,tabl
AUTHOR
Martin Griffiths, Jan 25 2010
STATUS
approved