login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176344
T(n,k) = 1 + A176343(n) - A176343(k) - A176343(n-k), triangle read by rows (n >= 0, 0 <= k <= n).
3
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 11, 13, 11, 1, 1, 65, 75, 75, 65, 1, 1, 568, 632, 640, 632, 568, 1, 1, 7789, 8356, 8418, 8418, 8356, 7789, 1, 1, 168761, 176549, 177114, 177168, 177114, 176549, 168761, 1, 1, 5847568, 6016328, 6024114, 6024671, 6024671, 6024114, 6016328, 5847568, 1
OFFSET
0,8
EXAMPLE
Triangle begins:
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 11, 13, 11, 1;
1, 65, 75, 75, 65, 1;
1, 568, 632, 640, 632, 568, 1;
1, 7789, 8356, 8418, 8418, 8356, 7789, 1;
1, 168761, 176549, 177114, 177168, 177114, 176549, 168761, 1;
...
MAPLE
with(combinat);
b:= proc(n) option remember;
if n = 0 then 0 else 1+fibonacci(n)*b(n-1)
fi; end proc;
T:= proc (n, k) 1+b(n)-b(n-k)-b(k) end proc;
seq(seq(T(n, k), k = 0..n), n = 0..10); # G. C. Greubel, Dec 08 2019
MATHEMATICA
b[n_]:= b[n]= If[n==0, 0, Fibonacci[n]*b[n-1] + 1]; (* A176343 *)
T[n_, k_]:= T[n, k] = 1 + a[n] - a[n-k] - a[k];
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Dec 08 2019 *)
PROG
(Maxima) (a[0] : 0, a[n] := fib(n)*a[n-1] + 1, T(n, m) := 1 + a[n] - a[m] - a[n-m])$ create_list(T(n, m), n, 0, 10, m, 0, n); /* Franck Maminirina Ramaharo, Nov 25 2018 */
(PARI) b(n) = if(n==0, 0, 1 + fibonacci(n)*b(n-1) );
T(n, k) = 1 + b(n) - b(n-k) - b(k);
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 07 2019
(Magma)
function b(n)
if n eq 0 then return 0;
else return 1 + Fibonacci(n)*b(n-1);
end if; return b; end function;
function T(n, k) return 1 + b(n) - b(n-k) - b(k); end function; [ T(n, k) : k in [0..n], n in [0..10]]; // G. C. Greubel, Dec 07 2019
(Sage)
def b(n):
if (n==0): return 0
else: return 1 + fibonacci(n)*b(n-1)
def T(n, k): return 1 + b(n) - b(n-k) - b(k)
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Dec 07 2019
(GAP)
b:= function(n)
if n=0 then return 0;
else return 1 + Fibonacci(n)*b(n-1);
fi; end;
T:= function(n, k) return 1 + b(n) - b(n-k) - b(k); end;
Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Dec 07 2019
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Apr 15 2010
EXTENSIONS
Edited and name clarified by Franck Maminirina Ramaharo, Nov 25 2018
STATUS
approved