OFFSET
0,5
COMMENTS
Row sums are {1, 2, 4, 16, 100, 720, 5670, 48972, 464660, 4829372, 54711782, ...}.
Row sums s(n) appear to obey (2-n)*s(n) +(n+2)*(n-1)*s(n-2) -n*(2*n-1)*s(n-2) +n*(n-2)*s(n-3)=0. - R. J. Mathar, May 04 2013
LINKS
G. C. Greubel, Rows n = 0..100 of triangle, flattened
FORMULA
T(n,k) = T(n,n-k).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 7, 7, 1;
1, 31, 36, 31, 1;
1, 165, 194, 194, 165, 1;
1, 1031, 1194, 1218, 1194, 1031, 1;
1, 7423, 8452, 8610, 8610, 8452, 7423, 1;
1, 60621, 68042, 69066, 69200, 69066, 68042, 60621, 1;
1, 554249, 614868, 622284, 623284, 623284, 622284, 614868, 554249, 1;
MAPLE
T:= proc(n, k) option remember;
if k=0 or k=n then 1
else 1 +floor(n!*(exp(1)-1)) -floor(k!*(exp(1)-1)) -floor((n-k)!*(exp(1)-1))
fi; end:
seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 26 2019
MATHEMATICA
(* First program *)
a[n_]:= a[n] = If[n==0, 0, n*a[n-1] +1];
T[n_, k_]:= T[n, k] = 1 -(a[k] +a[n-k] -a[n]);
Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_]:= T[n, k]= If[k==0 || k==n, 1, 1 +Floor[n!*(E-1)] -Floor[k!*(E-1)] - Floor[(n-k)!*(E-1)]]; Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 26 2019 *)
PROG
(PARI) T(n, k) = if(k==0 || k==n, 1, 1 +floor(n!*(exp(1)-1)) -floor(k!*(exp(1)-1)) -floor((n-k)!*(exp(1)-1)) ); \\ G. C. Greubel, Nov 26 2019
(Magma)b:= func< n | Factorial(n)*(Exp(1)-1)>;
function T(n, k)
if k eq 0 or k eq n then return 1;
else return 1 +Floor(b(n)) -Floor(b(k)) -Floor(b(n-k));
end if; return T; end function;
[T(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 26 2019
(Sage)
@CachedFunction
def b(n): return factorial(n)*(exp(1)-1);
def T(n, k):
if (k==0 or k==n): return 1
else: return 1 +floor(b(n)) -floor(b(k)) -floor(b(n-k))
[[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 26 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 14 2010
STATUS
approved