login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166345
Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+2*x+x^2)/(1-x)^4, read by rows.
5
1, 1, 1, 1, 2, 1, 1, 7, 7, 1, 1, 18, 42, 18, 1, 1, 41, 198, 198, 41, 1, 1, 88, 799, 1584, 799, 88, 1, 1, 183, 2925, 10331, 10331, 2925, 183, 1, 1, 374, 10056, 58874, 103310, 58874, 10056, 374, 1, 1, 757, 33160, 305888, 869794, 869794, 305888, 33160, 757, 1
OFFSET
1,5
REFERENCES
Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
FORMULA
T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+2*x+x^2)/(1-x)^4.
From G. C. Greubel, Mar 11 2022: (Start)
T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A005900(k), b(n, 0) = 1, and b(1, k) = 1.
T(n, n-k) = T(n, k). (End)
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 2, 1;
1, 7, 7, 1;
1, 18, 42, 18, 1;
1, 41, 198, 198, 41, 1;
1, 88, 799, 1584, 799, 88, 1;
1, 183, 2925, 10331, 10331, 2925, 183, 1;
1, 374, 10056, 58874, 103310, 58874, 10056, 374, 1;
1, 757, 33160, 305888, 869794, 869794, 305888, 33160, 757, 1;
MATHEMATICA
(* First program *)
p[x_, 1]:= x/(1-x)^2;
p[x_, 2]:= x*(1+x)/(1-x)^3;
p[x_, 3]:= x*(1+10*x+x^2)/(1-x)^4;
p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n, 12}]//Flatten
(* Second program *)
b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
t[n_, k_, m_]:= t[n, k, m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n, j, m], {j, 0, k}];
T[n_, k_, m_]:= T[n, k, m]= If[k==1, 1, t[n-1, k, m] - t[n-1, k-1, m]];
Table[T[n, k, -1], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)
PROG
(Sage)
def b(n, k, m):
if (n<2): return 1
elif (k==0): return 0
else: return k^(n-1)*((m+3)*k^2 - m)/3
@CachedFunction
def t(n, k, m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n, j, m) for j in (0..k) )
def A166345(n, k): return 1 if (k==1) else t(n-1, k, -1) - t(n-1, k-1, -1)
flatten([[A166345(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Oct 12 2009
EXTENSIONS
Edited by G. C. Greubel, Mar 11 2022
STATUS
approved