login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166344 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+6*x+x^2)/(1-x)^4, read by rows. 5
1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 34, 90, 34, 1, 1, 73, 406, 406, 73, 1, 1, 152, 1583, 3248, 1583, 152, 1, 1, 311, 5661, 20907, 20907, 5661, 311, 1, 1, 630, 19160, 117594, 209070, 117594, 19160, 630, 1, 1, 1269, 62520, 604496, 1750914, 1750914, 604496, 62520, 1269, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

REFERENCES

Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91

LINKS

G. C. Greubel, Rows n = 1..50 of the triangle, flattened

FORMULA

T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+6*x+x^2)/(1-x)^4.

From G. C. Greubel, Mar 11 2022: (Start)

T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A000447(k), b(n, 0) = 1, and b(1, k) = 1.

T(n, n-k) = T(n, k). (End)

EXAMPLE

Triangle begins as:

  1;

  1,    1;

  1,    6,     1;

  1,   15,    15,      1;

  1,   34,    90,     34,       1;

  1,   73,   406,    406,      73,       1;

  1,  152,  1583,   3248,    1583,     152,      1;

  1,  311,  5661,  20907,   20907,    5661,    311,     1;

  1,  630, 19160, 117594,  209070,  117594,  19160,   630,    1;

  1, 1269, 62520, 604496, 1750914, 1750914, 604496, 62520, 1269, 1;

MATHEMATICA

(* First program *)

p[x_, 1]:= x/(1-x)^2;

p[x_, 2]:= x*(1+x)/(1-x)^3;

p[x_, 3]:= x*(1+6*x+x^2)/(1-x)^4;

p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]

Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n, 12}]//Flatten

(* Second program *)

b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];

t[n_, k_, m_]:= t[n, k, m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n, j, m], {j, 0, k}];

T[n_, k_, m_]:= T[n, k, m]= If[k==1, 1, t[n-1, k, m] - t[n-1, k-1, m]];

Table[T[n, k, 1], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)

PROG

(Sage)

def b(n, k, m):

    if (n<2): return 1

    elif (k==0): return 0

    else: return k^(n-1)*((m+3)*k^2 - m)/3

@CachedFunction

def t(n, k, m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n, j, m) for j in (0..k) )

def A166344(n, k): return 1 if (k==1) else t(n-1, k, 1) - t(n-1, k-1, 1)

flatten([[A166344(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022

CROSSREFS

Cf. A166340, A166341, A166343, A166345, A166346, A166349.

Cf. A000447, A123125.

Sequence in context: A086645 A168291 A154980 * A146766 A176152 A146958

Adjacent sequences:  A166341 A166342 A166343 * A166345 A166346 A166347

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula, Oct 12 2009

EXTENSIONS

Edited by G. C. Greubel, Mar 11 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 19:57 EDT 2022. Contains 353957 sequences. (Running on oeis4.)