login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176152
Triangle, read by rows, T(n, k) = 2*binomial(n, k)*binomial(n+1, k)/(k+1) - (k! - n! + (n-k)!).
2
1, 1, 1, 1, 6, 1, 1, 15, 15, 1, 1, 37, 60, 37, 1, 1, 125, 212, 212, 125, 1, 1, 641, 904, 1058, 904, 641, 1, 1, 4375, 5310, 5990, 5990, 5310, 4375, 1, 1, 35351, 40270, 42546, 43800, 42546, 40270, 35351, 1, 1, 322649, 358918, 367194, 373320, 373320, 367194, 358918, 322649, 1
OFFSET
0,5
COMMENTS
Row sums are: {1, 2, 8, 32, 136, 676, 4150, 31352, 280136, 2844164, 31958544, ...}.
FORMULA
T(n, k) = 2*binomial(n, k)*binomial(n+1, k)/(k+1) - (k! - n! + (n-k)!).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 15, 15, 1;
1, 37, 60, 37, 1;
1, 125, 212, 212, 125, 1;
1, 641, 904, 1058, 904, 641, 1;
1, 4375, 5310, 5990, 5990, 5310, 4375, 1;
1, 35351, 40270, 42546, 43800, 42546, 40270, 35351, 1;
1, 322649, 358918, 367194, 373320, 373320, 367194, 358918, 322649, 1;
MAPLE
T:= 2*binomial(n, k)*binomial(n+1, k)/(k+1) -(k! -n! +(n-k)!); seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Nov 23 2019
MATHEMATICA
T[n_, k_] = 2*Binomial[n, k]*Binomial[n+1, k]/(k+1) -(k! -n! +(n-k)!); Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Nov 23 2019 *)
PROG
(PARI) T(n, k) = 2*binomial(n, k)*binomial(n+1, k)/(k+1) -(k!-n!+(n-k)!); \\ G. C. Greubel, Nov 23 2019
(Magma) F:=Factorial; [2*Binomial(n, k)*Binomial(n+1, k)/(k+1) - (F(k) - F(n) + F(n-k)): k in [0..n], n in [0..10]]; // G. C. Greubel, Nov 23 2019
(Sage) f=factorial; b=binomial; [[2*b(n, k)*b(n+1, k)/(k+1) -f(k) +f(n) - f(n-k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Nov 23 2019
(GAP) F:=Factorial;; B:=Binomial;; Flat(List([0..10], n-> List([0..n], k-> 2*B(n, k)*B(n+1, k)/(k+1) -F(k) +F(n) -F(n-k) ))); # G. C. Greubel, Nov 23 2019
CROSSREFS
Cf. A155170.
Sequence in context: A154980 A166344 A146766 * A146958 A154653 A376730
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Apr 10 2010
EXTENSIONS
Edited by G. C. Greubel, Nov 23 2019
STATUS
approved