login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A176151
Triangle T(n, k) = 2*(n+1 - mod(n, k+1) - mod(n, n-k+1) ) + (n! - k! - (n-k)!) read by rows.
3
1, 1, 1, 1, 6, 1, 1, 9, 9, 1, 1, 27, 26, 27, 1, 1, 105, 118, 118, 105, 1, 1, 613, 706, 714, 706, 613, 1, 1, 4333, 4930, 5016, 5016, 4930, 4333, 1, 1, 35297, 39610, 40208, 40278, 40208, 39610, 35297, 1, 1, 322577, 357856, 362168, 362742, 362742, 362168, 357856, 322577, 1
OFFSET
0,5
COMMENTS
Row sums are: 1, 2, 8, 20, 82, 448, 3354, 28560, 270510, 2810688, 31841122, ...
FORMULA
T(n, k) = 2*(n+1 - mod(n, k+1) - mod(n, n-k+1) ) + (n! - k! - (n-k)!).
T(n, k) = 2*A176149(n, k) - A155170(n, k). - G. C. Greubel, Feb 07 2021
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 9, 9, 1;
1, 27, 26, 27, 1;
1, 105, 118, 118, 105, 1;
1, 613, 706, 714, 706, 613, 1;
1, 4333, 4930, 5016, 5016, 4930, 4333, 1;
1, 35297, 39610, 40208, 40278, 40208, 39610, 35297, 1;
1, 322577, 357856, 362168, 362742, 362742, 362168, 357856, 322577, 1;
MATHEMATICA
Table[2*(n+1 -Mod[n, k+1] -Mod[n, n-k+1]) + (n! -k! -(n-k)!), {n, 0, 10}, {k, 0, n}]//Flatten
PROG
(Sage) f=factorial; flatten([[2*(n+1 - n%(k+1) - n%(n-k+1)) + (f(n) -f(k) -f(n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 07 2021
(Magma) F:=Factorial;; [2*(n+1 - n mod (k+1) - n mod (n-k+1)) + (F(n) -F(k) -F(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2021
CROSSREFS
Sequence in context: A143087 A144470 A174377 * A204001 A363291 A144395
KEYWORD
nonn,tabl,easy,less
AUTHOR
Roger L. Bagula, Apr 10 2010
EXTENSIONS
Edited by G. C. Greubel, Feb 07 2021
STATUS
approved