login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166343 Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4, read by rows. 6
1, 1, 1, 1, 12, 1, 1, 27, 27, 1, 1, 58, 162, 58, 1, 1, 121, 718, 718, 121, 1, 1, 248, 2759, 5744, 2759, 248, 1, 1, 503, 9765, 36771, 36771, 9765, 503, 1, 1, 1014, 32816, 205674, 367710, 205674, 32816, 1014, 1, 1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

REFERENCES

Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91

LINKS

G. C. Greubel, Rows n = 1..50 of the triangle, flattened

FORMULA

T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4.

From G. C. Greubel, Mar 11 2022: (Start)

T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A063521(k), b(n, 0) = 1, and b(1, k) = 1.

T(n, n-k) = T(n, k). (End)

EXAMPLE

Triangle begins as:

  1;

  1,    1;

  1,   12,      1;

  1,   27,     27,       1;

  1,   58,    162,      58,       1;

  1,  121,    718,     718,     121,       1;

  1,  248,   2759,    5744,    2759,     248,       1;

  1,  503,   9765,   36771,   36771,    9765,     503,      1;

  1, 1014,  32816,  205674,  367710,  205674,   32816,   1014,    1;

  1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1;

MATHEMATICA

(* First program *)

p[x_, 1]:= x/(1-x)^2;

p[x_, 2]:= x*(1+x)/(1-x)^3;

p[x_, 3]:= x*(1+12*x+x^2)/(1-x)^4;

p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]

Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n, 12}]//Flatten

(* Second program *)

b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];

t[n_, k_, m_]:= t[n, k, m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n, j, m], {j, 0, k}];

T[n_, k_, m_]:= T[n, k, m]= If[k==1, 1, t[n-1, k, m] - t[n-1, k-1, m]];

Table[T[n, k, 4], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Mar 11 2022 *)

PROG

(Sage)

def b(n, k, m):

    if (n<2): return 1

    elif (k==0): return 0

    else: return k^(n-1)*((m+3)*k^2 - m)/3

@CachedFunction

def t(n, k, m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n, j, m) for j in (0..k) )

def A166343(n, k): return 1 if (k==1) else t(n-1, k, 4) - t(n-1, k-1, 4)

flatten([[A166343(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 11 2022

CROSSREFS

Cf. A166340, A166341, A166344, A166345, A166346, A166349.

Cf. A063521, A123125.

Sequence in context: A168646 A051457 A174450 * A186432 A176489 A174039

Adjacent sequences:  A166340 A166341 A166342 * A166344 A166345 A166346

KEYWORD

nonn,tabl

AUTHOR

Roger L. Bagula, Oct 12 2009

EXTENSIONS

Edited by G. C. Greubel, Mar 11 2022

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 24 08:13 EDT 2022. Contains 354024 sequences. (Running on oeis4.)