login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166346
Coefficients of numerator of recursively defined rational function: p(x,3)=x*(x^2 + 8*x + 1)/(1 - x)^4; p(x, n) = 2*x*D[p(x, n - 1), x] - p(x,n-2).
5
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 158, 482, 158, 1, 1, 605, 4194, 4194, 605, 1, 1, 2276, 31047, 67752, 31047, 2276, 1, 1, 8515, 210609, 856075, 856075, 210609, 8515, 1, 1, 31802, 1356368, 9367974, 17194910, 9367974, 1356368, 31802, 1, 1, 118713
OFFSET
1,5
REFERENCES
Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91.
FORMULA
p(x,0)= 1/(1 - x);
p(x,1)= x/(1 - x)^2;
p(x,2)= x*(1 + x)/(1 - x)^3;
p(x,3)= x*(x^2 +8*x + 1)/(1 - x)^4;
p(x,n)= 2*x*D[p[x, n - 1], x] - p[x, n - 2]
EXAMPLE
{1},
{1, 1},
{1, 8, 1},
{1, 39, 39, 1},
{1, 158, 482, 158, 1},
{1, 605, 4194, 4194, 605, 1},
{1, 2276, 31047, 67752, 31047, 2276, 1},
{1, 8515, 210609, 856075, 856075, 210609, 8515, 1},
{1, 31802, 1356368, 9367974, 17194910, 9367974, 1356368, 31802, 1},
{1, 118713, 8453460, 93489572, 285010254, 285010254, 93489572, 8453460, 118713, 1},
{1, 443072, 51564829, 876484896, 4159141218, 6855899968, 4159141218, 876484896, 51564829, 443072, 1}
MATHEMATICA
p[x_, 0] := 1/(1 - x);
p[x_, 1] := x/(1 - x)^2;
p[x_, 2] := x*(1 + x)/(1 - x)^3;
p[x_, 3] := x*(x^2 + 8*x + 1)/(1 - x)^4;
p[x_, n_] := p[x, n] = 2*x*D[p[x, n - 1], x] - p[x, n - 2]
a = Table[CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x], {n, 1, 11}];
Flatten[a]
Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x]], {n, 1, 11}];
CROSSREFS
Sequence in context: A142597 A156137 A152972 * A157640 A142458 A174528
KEYWORD
nonn,tabl,uned,less
AUTHOR
Roger L. Bagula, Oct 12 2009
STATUS
approved