login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174528
Triangle T(n,m) = 2*A022168(n,m) - binomial(n, m), 0 <= m <= n, read by rows.
1
1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 708, 166, 1, 1, 677, 11584, 11584, 677, 1, 1, 2724, 186171, 753590, 186171, 2724, 1, 1, 10915, 2981685, 48417191, 48417191, 2981685, 10915, 1, 1, 43682, 47718190, 3101684114, 12443227012, 3101684114, 47718190
OFFSET
0,5
COMMENTS
Row sums are 1, 2, 10, 80, 1042, 24524, 1131382, 102819584, 18742118986, 6775774063892, 4926666912583390, ... = 2*A006118(n) - 2^n.
This triangle essentially compares a Gaussian binomial equivalent to Pascal's triangle and Pascal's triangle itself. - Alonso del Arte, Nov 14 2011
EXAMPLE
Triangle begins
1;
1, 1;
1, 8, 1;
1, 39, 39, 1;
1, 166, 708, 166, 1;
1, 677, 11584, 11584, 677, 1;
1, 2724, 186171, 753590, 186171, 2724, 1;
1, 10915, 2981685, 48417191, 48417191, 2981685, 10915, 1;
1, 43682, 47718190, 3101684114, 12443227012, 3101684114, 47718190, 43682, 1;
MAPLE
A174528 := proc(n, k)
2*A022168(n, k)-binomial(n, k) ;
end proc:
seq(seq(A174528(n, m), m=0..n), n=0..10) ; # R. J. Mathar, Nov 14 2011
MATHEMATICA
c[n_, q_] = Product[1 - q^i, {i, 1, n}];
t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m];
Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]
(* alternate program *)
(* First run the program for A022168 to define gaussianBinom *)
Column[Table[2gaussianBinom[n, k, 4] - Binomial[n, k], {n, 0, 8}, {k, 0, n}], Center] (* Alonso del Arte, Nov 14 2011 *)
CROSSREFS
Sequence in context: A166346 A157640 A142458 * A259465 A176227 A340560
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved