OFFSET
1,5
COMMENTS
LINKS
G. C. Greubel, Rows n = 1..50 of the triangle, flattened
G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_3(n,k).
FORMULA
EXAMPLE
The rows n >= 1 and columns 1 <= k <= n look as follows:
1;
1, 1;
1, 8, 1;
1, 39, 39, 1;
1, 166, 546, 166, 1;
1, 677, 5482, 5482, 677, 1;
1, 2724, 47175, 109640, 47175, 2724, 1;
1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1;
1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1;
MAPLE
A142458 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (3*n-3*k+1)*procname(n-1, k-1)+(3*k-2)*procname(n-1, k) ; end if; end proc:
seq(seq(A142458(n, k), k=1..n), n=1..10) ; # R. J. Mathar, Jun 04 2011
MATHEMATICA
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ];
Table[T[n, k, 3], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *)
PROG
(Sage)
def T(n, k, m): # A142458
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
flatten([[T(n, k, 3) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022
CROSSREFS
KEYWORD
AUTHOR
Roger L. Bagula, Sep 19 2008
EXTENSIONS
Edited by the Associate Editors of the OEIS, Aug 28 2009
STATUS
approved