The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142458 Triangle T(n,k) read by rows: T(n,k) = 1 if k=1 or k=n, otherwise T(n,k) = (3*n-3*k+1)*T(n-1,k-1) + (3*k-2)*T(n-1,k). 36
 1, 1, 1, 1, 8, 1, 1, 39, 39, 1, 1, 166, 546, 166, 1, 1, 677, 5482, 5482, 677, 1, 1, 2724, 47175, 109640, 47175, 2724, 1, 1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1, 1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS Consider the triangle T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k). For m = ...,-2,-1,0,1,2,3,... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, ... - _N. J. A. Sloane_, May 08 2013 LINKS G. C. Greubel, Rows n = 1..50 of the triangle, flattened G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_3(n,k). FORMULA T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 3. Sum_{k=1..n} T(n, k) = A008544(n-1). From _G. C. Greubel_, Mar 14 2022: (Start) T(n, n-k) = T(n, k). T(n, 2) = A144414(n-1). T(n, 3) = A142976(n-2). T(n, 4) = A144380(n-3). T(n, 5) = A144381(n-4). (End) EXAMPLE The rows n >= 1 and columns 1 <= k <= n look as follows: 1; 1, 1; 1, 8, 1; 1, 39, 39, 1; 1, 166, 546, 166, 1; 1, 677, 5482, 5482, 677, 1; 1, 2724, 47175, 109640, 47175, 2724, 1; 1, 10915, 373809, 1709675, 1709675, 373809, 10915, 1; 1, 43682, 2824048, 23077694, 44451550, 23077694, 2824048, 43682, 1; MAPLE A142458 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (3*n-3*k+1)*procname(n-1, k-1)+(3*k-2)*procname(n-1, k) ; end if; end proc: seq(seq(A142458(n, k), k=1..n), n=1..10) ; # _R. J. Mathar_, Jun 04 2011 MATHEMATICA T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ]; Table[T[n, k, 3], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by _G. C. Greubel_, Mar 14 2022 *) PROG (Sage) def T(n, k, m): # A142458 if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m) flatten([[T(n, k, 3) for k in (1..n)] for n in (1..10)]) # _G. C. Greubel_, Mar 14 2022 CROSSREFS Cf. A225372 (m=-2), A144431 (m=-1), A007318 (m=0), A008292 (m=1), A060187 (m=2), this sequence (m=3), A142459 (m=4), A142560 (m=5), A142561 (m=6), A142562 (m=7), A167884 (m=8), A257608 (m=9). Cf. A008544, A142976, A144380, A144381, A144414. Sequence in context: A152972 A166346 A157640 * A174528 A259465 A176227 Adjacent sequences: A142455 A142456 A142457 * A142459 A142460 A142461 KEYWORD nonn,easy,tabl AUTHOR _Roger L. Bagula_, Sep 19 2008 EXTENSIONS Edited by the Associate Editors of the OEIS, Aug 28 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 15:50 EDT 2024. Contains 373461 sequences. (Running on oeis4.)