login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A167884
Triangle read by rows: T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 8.
7
1, 1, 1, 1, 18, 1, 1, 179, 179, 1, 1, 1636, 6086, 1636, 1, 1, 14757, 144362, 144362, 14757, 1, 1, 132854, 2941135, 7218100, 2941135, 132854, 1, 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1, 1, 10761672, 1001178268, 9211047544, 18315657030, 9211047544, 1001178268, 10761672, 1
OFFSET
1,5
LINKS
G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_8(n,k)
FORMULA
T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 8.
Sum_{k=1..n} T(n, k) = A084948(n-1).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 18, 1;
1, 179, 179, 1;
1, 1636, 6086, 1636, 1;
1, 14757, 144362, 144362, 14757, 1;
1, 132854, 2941135, 7218100, 2941135, 132854, 1;
1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1;
MATHEMATICA
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
A167884[n_, k_]:= T[n, k, 8];
Table[A167884[n, k], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 18 2022 *)
PROG
(Sage)
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A167884(n, k): return T(n, k, 8)
flatten([[ A167884(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 18 2022
CROSSREFS
For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142460, A142461, A142462, A167884, ...
Cf. A084948 (row sums).
Sequence in context: A202677 A179838 A174678 * A022181 A015144 A040332
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Nov 14 2009
EXTENSIONS
Edited by N. J. A. Sloane, May 08 2013
STATUS
approved