Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Mar 18 2022 02:50:53
%S 1,1,1,1,18,1,1,179,179,1,1,1636,6086,1636,1,1,14757,144362,144362,
%T 14757,1,1,132854,2941135,7218100,2941135,132854,1,1,1195735,55446309,
%U 277509955,277509955,55446309,1195735,1,1,10761672,1001178268,9211047544,18315657030,9211047544,1001178268,10761672,1
%N Triangle read by rows: T(n,k) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 8.
%H G. C. Greubel, <a href="/A167884/b167884.txt">Rows n = 1..50 of the triangle, flattened</a>
%H G. Strasser, <a href="http://dx.doi.org/10.1017/S0305004110000538">Generalisation of the Euler adic</a>, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_8(n,k)
%F T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), with T(n, 1) = T(n, n) = 1, and m = 8.
%F Sum_{k=1..n} T(n, k) = A084948(n-1).
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 18, 1;
%e 1, 179, 179, 1;
%e 1, 1636, 6086, 1636, 1;
%e 1, 14757, 144362, 144362, 14757, 1;
%e 1, 132854, 2941135, 7218100, 2941135, 132854, 1;
%e 1, 1195735, 55446309, 277509955, 277509955, 55446309, 1195735, 1;
%t T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k-m+1)*T[n-1, k, m]];
%t A167884[n_, k_]:= T[n,k,8];
%t Table[A167884[n, k], {n,12}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 18 2022 *)
%o (Sage)
%o @CachedFunction
%o def T(n,k,m):
%o if (k==1 or k==n): return 1
%o else: return (m*(n-k)+1)*T(n-1,k-1,m) + (m*k-m+1)*T(n-1,k,m)
%o def A167884(n,k): return T(n,k,8)
%o flatten([[ A167884(n,k) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Mar 18 2022
%Y For m = ...,-2,-1,0,1,2,3,4,5,6,7,8, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142460, A142461, A142462, A167884, ...
%Y Cf. A084948 (row sums).
%K nonn,tabl,easy
%O 1,5
%A _Roger L. Bagula_, Nov 14 2009
%E Edited by _N. J. A. Sloane_, May 08 2013