The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A142460 Triangle read by rows: T(n,k) (1<=k<=n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 5. 9
 1, 1, 1, 1, 12, 1, 1, 83, 83, 1, 1, 514, 1826, 514, 1, 1, 3105, 28310, 28310, 3105, 1, 1, 18656, 376615, 905920, 376615, 18656, 1, 1, 111967, 4627821, 22403635, 22403635, 4627821, 111967, 1, 1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS One of a family of triangles. For m = ...,-2,-1,0,1,2,3,4,5,... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142560, ... LINKS G. C. Greubel, Rows n = 1..50 of the triangle, flattened G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_5(n,k). FORMULA T(n, k, m) = (m*n - m*k + 1)*T(n-1, k-1, m) + (m*k - (m-1))*T(n-1, k, m), with T(t,1,m) = T(n,n,m) = 1, and m = 5. Sum_{k=1..n} T(n, k, 5) = A047055(n-1). EXAMPLE Triangle begins as: 1; 1, 1; 1, 12, 1; 1, 83, 83, 1; 1, 514, 1826, 514, 1; 1, 3105, 28310, 28310, 3105, 1; 1, 18656, 376615, 905920, 376615, 18656, 1; 1, 111967, 4627821, 22403635, 22403635, 4627821, 111967, 1; 1, 671838, 54377008, 478781506, 940952670, 478781506, 54377008, 671838, 1; MAPLE A142460 := proc(n, k) if n = k then 1; elif k > n or k < 1 then 0 ; else (5*n-5*k+1)*procname(n-1, k-1)+(5*k-4)*procname(n-1, k) ; end if; end proc: seq(seq(A142459(n, k), k=1..n), n=1..10) ; # R. J. Mathar, May 11 2013 MATHEMATICA T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m] ]; Table[T[n, k, 5], {n, 1, 10}, {k, 1, n}]//Flatten (* modified by G. C. Greubel, Mar 14 2022 *) PROG (Sage) def T(n, k, m): # A142460 if (k==1 or k==n): return 1 else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m) flatten([[T(n, k, 5) for k in (1..n)] for n in (1..10)]) # G. C. Greubel, Mar 14 2022 CROSSREFS Cf. A225372 (m=-2), A144431 (m=-1), A007318 (m=0), A008292 (m=1), A060187 (m=2), A142458 (m=3), A142459 (m=4), this sequence (m=5), A142561 (m=6), A142562 (m=7), A167884 (m=8), A257608 (m=9). Cf. A047055 (row sums). Sequence in context: A174151 A342890 A155491 * A156280 A166962 A022175 Adjacent sequences: A142457 A142458 A142459 * A142461 A142462 A142463 KEYWORD nonn,tabl,easy AUTHOR Roger L. Bagula, Sep 19 2008 EXTENSIONS Edited by N. J. A. Sloane, May 08 2013, May 11 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 17 15:57 EDT 2024. Contains 373463 sequences. (Running on oeis4.)