login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A378666
Triangular array read by rows: T(n,k) is the number of n X n idempotent matrices over GF(3) having rank k, n>=0, 0<=k<=n.
2
1, 1, 1, 1, 12, 1, 1, 117, 117, 1, 1, 1080, 10530, 1080, 1, 1, 9801, 882090, 882090, 9801, 1, 1, 88452, 72243171, 666860040, 72243171, 88452, 1, 1, 796797, 5873190687, 491992666011, 491992666011, 5873190687, 796797, 1, 1, 7173360, 476309310660, 360089838858960, 3267815287645062, 360089838858960, 476309310660, 7173360, 1
OFFSET
0,5
COMMENTS
A matrix M is idempotent if M^2 = M.
FORMULA
Sum_{n>=0} Sum{k=0..n} T(n,k)*y^k*x^n/B(n) = e(x)*e(y*x) where e(x) = Sum_{n>=0} x^n/B(n) and B(n) = A053290(n)/2^n.
T(n,k) = A022167(n,k) * A118180(n,k). - Alois P. Heinz, Dec 02 2024
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 12, 1;
1, 117, 117, 1;
1, 1080, 10530, 1080, 1;
1, 9801, 882090, 882090, 9801, 1;
...
MAPLE
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, b(n-1, k-1)+3^k*b(n-1, k)))
end:
T:= (n, k)-> 3^(k*(n-k))*b(n, k):
seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Dec 02 2024
MATHEMATICA
nn = 7; B[n_, q_] := \[Gamma][n, q]/(q - 1)^n; \[Zeta][x_] := Sum[x^n/B[n, 3], {n, 0, nn}]; Map[Select[#, # > 0 &] &, Table[B[n, 3], {n, 0, nn}]*CoefficientList[Series[\Zeta][x] \[Zeta][y x], {x, 0, nn}], {x, y}]] // Grid
CROSSREFS
Cf. A296548, A053846 (row sums).
Sequence in context: A142460 A156280 A166962 * A022175 A340427 A176627
KEYWORD
nonn,tabl,new
AUTHOR
Geoffrey Critzer, Dec 02 2024
STATUS
approved