OFFSET
0,5
COMMENTS
A matrix M is idempotent if M^2 = M.
FORMULA
Sum_{n>=0} Sum{k=0..n} T(n,k)*y^k*x^n/B(n) = e(x)*e(y*x) where e(x) = Sum_{n>=0} x^n/B(n) and B(n) = A053290(n)/2^n.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
1, 12, 1;
1, 117, 117, 1;
1, 1080, 10530, 1080, 1;
1, 9801, 882090, 882090, 9801, 1;
...
MAPLE
b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, b(n-1, k-1)+3^k*b(n-1, k)))
end:
T:= (n, k)-> 3^(k*(n-k))*b(n, k):
seq(seq(T(n, k), k=0..n), n=0..8); # Alois P. Heinz, Dec 02 2024
MATHEMATICA
nn = 7; B[n_, q_] := \[Gamma][n, q]/(q - 1)^n; \[Zeta][x_] := Sum[x^n/B[n, 3], {n, 0, nn}]; Map[Select[#, # > 0 &] &, Table[B[n, 3], {n, 0, nn}]*CoefficientList[Series[\Zeta][x] \[Zeta][y x], {x, 0, nn}], {x, y}]] // Grid
CROSSREFS
KEYWORD
AUTHOR
Geoffrey Critzer, Dec 02 2024
STATUS
approved