login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053846
Number of n X n matrices over GF(3) of order dividing 2 (i.e., number of solutions of X^2=I in GL(n,3)).
9
1, 2, 14, 236, 12692, 1783784, 811523288, 995733306992, 3988947598331024, 43581058503809001248, 1559669026899267564563936, 152805492791495918971070907584, 49094725258525117931062810300451648, 43237014297639482582550110281347475757696, 124920254287369111633119733942816364074145497472
OFFSET
0,2
COMMENTS
Or, number of n X n invertible diagonalizable matrices over GF(3).
REFERENCES
Vladeta Jovovic, The cycle index polynomials of some classical groups, Belgrade, 1995, unpublished.
LINKS
Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
a(n)/A053290(n) is the coefficient of x^n in (Sum_{n>=0} x^n/A053290(n))^2. - Geoffrey Critzer, Aug 05 2017
EXAMPLE
a(2) = 14 because we have: {{0, 1}, {1, 0}}, {{0, 2}, {2, 0}}, {{1, 0}, {0, 1}}, {{1, 0}, {0,2}}, {{1, 0}, {1, 2}}, {{1, 0}, {2, 2}}, {{1, 1}, {0, 2}}, {{1,2}, {0, 2}}, {{2, 0}, {0, 1}}, {{2, 0}, {0, 2}}, {{2, 0}, {1,1}}, {{2, 0}, {2, 1}}, {{2, 1}, {0, 1}}, {{2, 2}, {0, 1}}. - Geoffrey Critzer, Aug 05 2017
MAPLE
T:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
`if`(n=0, 1, T(n-1, k-1)+3^k*T(n-1, k)))
end:
a:= n-> add(3^(k*(n-k))*T(n, k), k=0...n):
seq(a(n), n=0..15); # Alois P. Heinz, Aug 06 2017
MATHEMATICA
nn = 12; g[ n_] := (q - 1)^n q^Binomial[n, 2] FunctionExpand[
QFactorial[n, q]] /. q -> 3; G[z_] := Sum[z^k/g[k], {k, 0, nn}]; Table[g[n], {n, 0, nn}] CoefficientList[Series[G[z]^2, {z, 0, nn}], z] /* Geoffrey Critzer, Aug 05 2017
PROG
(PARI) a(n)={my(v=[1]); for(n=1, n, v=vector(#v+1, k, if(k>1, v[k-1]) + if(k<=#v, 3^(k-1)*v[k]))); sum(k=0, n, 3^(k*(n-k))*v[k+1])} \\ Andrew Howroyd, Mar 02 2018
(Python)
from sympy.core.cache import cacheit
@cacheit
def T(n, k): return 0 if k<0 or k>n else 1 if n==0 else T(n - 1, k - 1) + 3**k*T(n - 1, k)
def a(n): return sum(3**(k*(n - k))*T(n, k) for k in range(n + 1))
print([a(n) for n in range(15)]) # Indranil Ghosh, Aug 06 2017, after Maple code
CROSSREFS
Row sums of A378666.
Sequence in context: A048163 A093548 A052215 * A053855 A219344 A343441
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Mar 28 2000
EXTENSIONS
More terms from Geoffrey Critzer, Aug 05 2017
STATUS
approved