login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053845
Primes of form prime(1) + ... + prime(k) + 1.
3
3, 11, 29, 59, 101, 239, 569, 1061, 1481, 1721, 4889, 5351, 6871, 22549, 23593, 25801, 29297, 35569, 38239, 41023, 71209, 77137, 87517, 94057, 105541, 120349, 122921, 125509, 128113, 133387, 138869, 141677, 156109, 159073, 165041, 183707
OFFSET
1,1
LINKS
FORMULA
a(n) = A007504(A089228(n)) + 1. - Amiram Eldar, Apr 29 2024
EXAMPLE
prime(1) + 1 = 2 + 1 = 3 (prime, thus a(1));
prime(1) + prime(2) + 1 = 2 + 3 + 1 = 6 (nonprime);
prime(1) + prime(2) + prime(3) + 1 = 2 + 3 + 5 + 1 = 11 (prime, thus a(2)); etc. - Jon E. Schoenfield, Jan 09 2015
MATHEMATICA
p=1; lst={}; Do[p+=Prime[n]; If[PrimeQ[p], AppendTo[lst, p]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jun 14 2009 *)
PROG
(UBASIC) 10 x=x+1; 20 if x<>prmdiv(x) then 10; 30 y=x; 40 r=r+y; 50 if r=prmdiv(r) then print r; :p=p+1; 60 if p<100 then 10
(PARI) lista(nn) = {s = 1; for (n=1, nn, s += prime(n); if (isprime(s), print1(s, ", ")); ); } \\ Michel Marcus, Jan 10 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Enoch Haga, Mar 28 2000
STATUS
approved