Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Apr 29 2024 09:09:07
%S 3,11,29,59,101,239,569,1061,1481,1721,4889,5351,6871,22549,23593,
%T 25801,29297,35569,38239,41023,71209,77137,87517,94057,105541,120349,
%U 122921,125509,128113,133387,138869,141677,156109,159073,165041,183707
%N Primes of form prime(1) + ... + prime(k) + 1.
%H Amiram Eldar, <a href="/A053845/b053845.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A007504(A089228(n)) + 1. - _Amiram Eldar_, Apr 29 2024
%e prime(1) + 1 = 2 + 1 = 3 (prime, thus a(1));
%e prime(1) + prime(2) + 1 = 2 + 3 + 1 = 6 (nonprime);
%e prime(1) + prime(2) + prime(3) + 1 = 2 + 3 + 5 + 1 = 11 (prime, thus a(2)); etc. - _Jon E. Schoenfield_, Jan 09 2015
%t p=1;lst={};Do[p+=Prime[n];If[PrimeQ[p],AppendTo[lst,p]],{n,7!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Jun 14 2009 *)
%o (UBASIC) 10 x=x+1; 20 if x<>prmdiv(x) then 10; 30 y=x; 40 r=r+y; 50 if r=prmdiv(r) then print r;:p=p+1; 60 if p<100 then 10
%o (PARI) lista(nn) = {s = 1; for (n=1, nn, s += prime(n); if (isprime(s), print1(s, ", ")););} \\ _Michel Marcus_, Jan 10 2015
%Y Cf. A007504, A013918, A089228.
%K easy,nonn
%O 1,1
%A _Enoch Haga_, Mar 28 2000