|
|
A013918
|
|
Primes equal to the sum of the first k primes for some k.
|
|
46
|
|
|
2, 5, 17, 41, 197, 281, 7699, 8893, 22039, 24133, 25237, 28697, 32353, 37561, 38921, 43201, 44683, 55837, 61027, 66463, 70241, 86453, 102001, 109147, 116533, 119069, 121631, 129419, 132059, 263171, 287137, 325019, 329401, 333821, 338279, 342761
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Sum of the first k primes p_1+p_2+...+p_k is in the sequence if and only if there exists the prime q for which p_i divides p_1+p_2+...+p_k+q for all i to k. - Vladimir Letsko, Oct 13 2013
|
|
LINKS
|
|
|
FORMULA
|
|
|
MAPLE
|
P:=proc(n) local i, j; j:=2; for i from 2 by 1 to n do j:=j+ithprime(i); if isprime(j) then print(j); fi; od; end: P(1000); # Paolo P. Lava, May 05 2006
|
|
MATHEMATICA
|
|
|
PROG
|
(PARI) n=0; forprime(k=2, 2300, n=n+k; if(isprime(n), print(n))) \\ Michael B. Porter, Jan 29 2010
(Haskell)
a013918 n = a013918_list !! (n-1)
a013918_list = filter ((== 1) . a010051) a007504_list
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|