login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048163 a(n) = Sum_{k=1..n} ((k-1)!)^2*Stirling2(n,k)^2. 10
1, 2, 14, 230, 6902, 329462, 22934774, 2193664790, 276054834902, 44222780245622, 8787513806478134, 2121181056663291350, 611373265185174628502, 207391326125004608457782, 81791647413265571604175094, 37109390748309009878392597910 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

Lovasz, L. and Vesztergombi, K.; Restricted permutations and Stirling numbers. Combinatorics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, pp. 731-738, Colloq. Math. Soc. Janos Bolyai, 18, North-Holland, Amsterdam-New York, 1978.

K. Vesztergombi, Permutations with restriction of middle strength, Stud. Sci. Math. Hungar., 9 (1974), 181-185.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

Chad Brewbaker, A combinatorial interpretation of the poly-Bernoulli numbers and two Fermat analogues, INTEGERS Vol. 8 (2008), #A02.

Hyeong-Kwan Ju and Seunghyun Seo, Enumeration of (0,1)-matrices avoiding some 2 X 2 matrices, Discrete Math., 312 (2012), 2473-2481.

Ken Kamano, Lonesum decomposable matrices, arXiv:1701.07157 [math.CO], 2017.

H.-K. Kim et al., Poly-Bernoulli numbers and lonesum matrices, arXiv:1103.4884 [math.CO], 2011.

FORMULA

E.g.f. (with offset 0): Sum((1-exp(-(m+1)*z))^m, m=0..oo)

O.g.f.: Sum_{n>=1} n^(n-1) * (n-1)! * x^n / Product_{k=1..n-1} (1 - n*k*x). - Paul D. Hanna, Jan 05 2013

Limit n->infinity (a(n)/n!)^(1/n)/n = 1/(exp(1)*(log(2))^2) = 0.7656928576... . - Vaclav Kotesovec, Jun 21 2013

a(n) ~ 2*sqrt(Pi) * n^(2*n-3/2) / (sqrt(1-log(2)) * exp(2*n) * (log(2))^(2*n-1)). - Vaclav Kotesovec, May 13 2014

a(n+1) = Sum_{k = 0..n} A163626(n,k)^2. - Philippe Deléham, May 30 2015

a(n) = A306209(2n-2,n-1). - Alois P. Heinz, Feb 01 2019

EXAMPLE

1

1 + 1 = 2

1 + 9 + 4 = 14

1 + 49 + 144 + 36 = 230

1 + 225 + 2500 + 3600 + 576 = 6902

... - Philippe Deléham, May 30 2015

MATHEMATICA

Table[Sum[((k-1)!)^2*StirlingS2[n, k]^2, {k, 1, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jun 21 2013 *)

PROG

(PARI) a(n)=if(n<1, 0, polcoeff(sum(m=1, n, m^(m-1)*(m-1)!*x^m/prod(k=1, m-1, 1+m*k*x+x*O(x^n))), n)) \\ Paul D. Hanna, Jan 05 2013

for(n=1, 20, print1(a(n), ", "))

(PARI) Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)

a(n)=sum(k=1, n, (-1)^(n-k)*k^(n-1)*(k-1)!*Stirling2(n-1, k-1))

for(n=1, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Jan 06 2013

(PARI) a(n) = sum(k=1, n, (k-1)!^2*stirling(n, k, 2)^2); \\ Michel Marcus, Jun 22 2018

CROSSREFS

Main diagonal of array A099594.

Cf. A220181, A306209.

Sequence in context: A338187 A323693 A118086 * A093548 A052215 A053846

Adjacent sequences:  A048160 A048161 A048162 * A048164 A048165 A048166

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, R. K. Guy

EXTENSIONS

Entry revised by N. J. A. Sloane, Jul 05 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 02:57 EDT 2021. Contains 346282 sequences. (Running on oeis4.)