login
A338187
E.g.f. A(x) satisfies: A(x) = 1 + Integral (x/A(x)^3)' / (x/A(x)^4)' dx.
7
1, 1, 2, 14, 224, 5536, 184576, 7764352, 394918784, 23579517824, 1617167879936, 125302954690816, 10826107873964032, 1032042586785624064, 107609913261744349184, 12183253948487768907776, 1488445213610069857796096, 195181881537478283036065792, 27344175437591659820860309504
OFFSET
0,3
LINKS
FORMULA
a(n) ~ 3^(2*n - 5/4) * n^(n-2) / (2^(5/3) * exp(n - 1/6)).
MATHEMATICA
nmax = 20; A = 1; Do[A = 1 + Integrate[D[x/A^3, x]/D[x/A^4, x], x] + O[x]^nmax, nmax]; CoefficientList[A, x] * Range[0, nmax - 1]!
PROG
(PARI) {a(n) = my(A=1); for(i=1, n, A = 1 + intformal( (x/A^3)'/(x/A^4 +x*O(x^n))' ); ); n!*polcoeff(A, n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 15 2020
STATUS
approved