login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338184
G.f. A(x) satisfies: 1 = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) * A(x)^(n+1) /( Product_{k=1..n+1} 1 + x^k*A(x) ).
2
1, 2, 6, 20, 72, 274, 1088, 4462, 18768, 80552, 351452, 1554360, 6953182, 31406472, 143043384, 656225618, 3029606032, 14065166648, 65623654844, 307542991080, 1447064884324, 6833469156024, 32375938380454, 153853312669856, 733137984581920, 3502378475368244, 16770811951363082, 80479149475376288
OFFSET
0,2
COMMENTS
Compare the g.f. to the following series identities.
(1) 1 = Sum_{n>=0} x^(n*(n+1)/2) * a^n /( Product_{k=1..n+1} 1 + x^k*a ), which holds for all a.
(2) Q = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) /( Product_{k=1..n+1} 1 + x^k ),
(3) Q = Sum_{n>=0} (-1)^n * x^n * ( Product_{k=0..n-1} 1 + x^k ),
where Q = 1 - 2*Sum_{n>=1} (x^(n*(3*n-1)/2) - x^(n*(3*n+1)/2)) = 1 - 2*x + 2*x^2 - 2*x^5 + 2*x^7 - 2*x^12 + 2*x^15 - 2*x^22 + 2*x^26 + ...
For n>0, a(n) = 2 (mod 4) iff n is a generalized pentagonal number (A001318), and a(n) = 0 (mod 4) elsewhere (conjecture).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} (-1)^n * x^(n*(n+1)/2) * A(x)^(n+1) /( Product_{k=1..n+1} 1 + x^k*A(x) ).
(2) 1 = Sum_{n>=0} x^(n*(n+1)/2) * A(x)^n /( Product_{k=1..n+1} 1 + x^k*A(x) ).
(3) 1 = Sum_{n>=0} (-1)^n * x^n * A(x)^(n+1) * ( Product_{k=0..n-1} 1 + x^k ).
a(n) ~ c * d^n / n^(3/2), where d = 5.074478094065946942699247453461914358319648... and c = 1.036722248866192132778767799931330371... - Vaclav Kotesovec, Oct 17 2020
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 20*x^3 + 72*x^4 + 274*x^5 + 1088*x^6 + 4462*x^7 + 18768*x^8 + 80552*x^9 + 351452*x^10 + ...
where, if we set A = A(x), then
1 = A/(1 + x*A) - x*A^2/((1 + x*A)*(1 + x^2*A)) + x^3*A^3/((1 + x*A)*(1 + x^2*A)*(1 + x^3*A)) - x^6*A^4/((1 + x*A)*(1 + x^2*A)*(1 + x^3*A)*(1 + x^4*A)) + x^10*A^5/((1 + x*A)*(1 + x^2*A)*(1 + x^3*A)*(1 + x^4*A)*(1 + x^5*A)) -+ ...
also (trivially),
1 = 1/(1 + x*A) + x*A/((1 + x*A)*(1 + x^2*A)) + x^3*A^2/((1 + x*A)*(1 + x^2*A)*(1 + x^3*A)) + x^6*A^3/((1 + x*A)*(1 + x^2*A)*(1 + x^3*A)*(1 + x^4*A)) + x^10*A^4/((1 + x*A)*(1 + x^2*A)*(1 + x^3*A)*(1 + x^4*A)*(1 + x^5*A)) + ...
Further,
1 = A - 2*x*A^2 + 2*x^2*A^3*(1+x) - 2*x^3*A^4*(1+x)*(1+x^2) + 2*x^4*A^5*(1+x)*(1+x^2)*(1+x^3)*(1+x^4) - 2*x^5*A^6*(1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5) + 2*x^6*A^7*(1+x)*(1+x^2)*(1+x^3)*(1+x^4)*(1+x^5)*(1+x^6) -+ ... + (-1)^n * x^n * A(x)^(n+1) * Product_{k=0..n-1} (1 + x^k) + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = -Vec( sum(m=0, sqrtint(2*n+1), (-1)^m * x^(m*(m+1)/2) * Ser(A)^(m+1) / prod(k=1, m+1, 1 + x^k*Ser(A))) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
(PARI) /* 1 = Sum_{n>=0} (-x)^n * A(x)^(n+1) * Product_{k=0..n-1} (1 + x^k) */
{a(n) = my(A=1); for(i=1, n, A = 1 - 2*sum(m=1, n, (-x)^m * A^(m+1) * prod(k=1, m-1, 1 + x^k +x*O(x^n)) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A338185.
Sequence in context: A186576 A272485 A122737 * A348351 A150134 A059279
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 16 2020
STATUS
approved