login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338182
G.f.: Sum_{n>=0} x^n * Product_{k=3*n..4*n-1} (1 + (1+x)^k).
0
1, 2, 7, 37, 251, 1947, 17141, 167163, 1779029, 20456722, 251997747, 3303602265, 45842747207, 670308495256, 10288071997990, 165203260586951, 2767484369773904, 48243983405917665, 873228719542308898, 16378723735806496553, 317781161715431909527, 6367610715649281689454, 131581260677384045968633
OFFSET
0,2
FORMULA
G.f.: Sum_{n>=0} x^n * Product_{k=3*n..4*n-1} (1 + (1+x)^k).
G.f.: Sum_{n>=0} x^n * (1+x)^(n*(7*n-1)/2) / ( Product_{k=3*n..4*n} 1 - x*(1+x)^k ).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 37*x^3 + 251*x^4 + 1947*x^5 + 17141*x^6 + 167163*x^7 + 1779029*x^8 + 20456722*x^9 + 251997747*x^10 + ...
where
A(x) = 1 + x*(1 + (1+x)^3) + x^2*(1 + (1+x)^6)*(1 + (1+x)^7) + x^3*(1 + (1+x)^9)*(1 + (1+x)^10)*(1 + (1+x)^11) + x^4*(1 + (1+x)^12)*(1 + (1+x)^13)*(1 + (1+x)^14)*(1 + (1+x)^15) + x^5*(1 + (1+x)^15)*(1 + (1+x)^16)*(1 + (1+x)^17)*(1 + (1+x)^18)*(1 + (1+x)^19) + ... + x^n*Product_{k=3*n..4*n-1} (1 + (1+x)^k) + ...
Also
A(x) = 1/(1 - x) + x*(1+x)^3/((1 - x*(1+x)^3)*(1 - x*(1+x)^4)) + x^2*(1+x)^13/((1 - x*(1+x)^6)*(1 - x*(1+x)^7)*(1 - x*(1+x)^8)) + x^3*(1+x)^30/((1 - x*(1+x)^9)*(1 - x*(1+x)^10)*(1 - x*(1+x)^11)*(1 - x*(1+x)^12)) + x^4*(1+x)^54/((1 - x*(1+x)^12)*(1 - x*(1+x)^13)*(1 - x*(1+x)^14)*(1 - x*(1+x)^15)*(1 - x*(1+x)^16)) + ... + x^n*(1+x)^(n*(7*n-1)/2)/(Product_{k=3*n..4*n} 1 - x*(1+x)^k) + ...
PROG
(PARI) {a(n) = polcoeff( sum(m=0, n, x^m * prod(k=3*m, 4*m-1, 1 + (1+x)^k +x*O(x^n)) ), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n) = polcoeff( sum(m=0, n, x^m * (1+x +x*O(x^n))^(m*(7*m-1)/2) / prod(k=3*m, 4*m, 1 - x*(1+x)^k +x*O(x^n)) ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A125191 A300559 A302859 * A135164 A321087 A072597
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 19 2020
STATUS
approved