login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338181
G.f.: A(x) satisfies 1 = Sum_{n>=0} Product_{k=2*n..3*n-1} ( (1+x)^k - A(x) ).
3
1, 2, 7, 123, 3434, 127389, 5800285, 310671959, 19065484061, 1316721595692, 101007119697478, 8520008641904667, 783858935294161761, 78131288902786790863, 8389163022856205911508, 965540248030539267674460, 118603148642277195505854462, 15489151634920585316431414382, 2143263988200596035777277393467
OFFSET
0,2
COMMENTS
Compare the g.f. A(x) to functions B(x) and C(x) defined by
A338178: 1 = Sum_{n>=0} Product_{k=n..2*n-1} ((1+x)^k - B(x)) ;
A338183: 1 = Sum_{n>=0} Product_{k=3*n..4*n-1} ((1+x)^k - C(x)).
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} Product_{k=2*n..3*n-1} ( (1+x)^k - A(x) ).
(2) 1 = Sum_{n>=0} (1+x)^(n*(5*n-1)/2) / Product_{k=2*n..3*n} (1 + (1+x)^k*A(x)).
a(n) ~ c * d^n * n^n / exp(n), where d = 7.8565736454589... and c = 0.30167199686... - Vaclav Kotesovec, Aug 12 2021
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 123*x^3 + 3434*x^4 + 127389*x^5 + 5800285*x^6 + 310671959*x^7 + 19065484061*x^8 + 1316721595692*x^9 + 101007119697478*x^10 + ...
Let A = A(x), then g.f. A(x) satisfies
1 = 1 + ((1+x)^2 - A) + ((1+x)^4 - A)*((1+x)^5 - A) + ((1+x)^6 - A)*((1+x)^7 - A)*((1+x)^8 - A) + ((1+x)^8 - A)*((1+x)^9 - A)*((1+x)^10 - A)*((1+x)^11 - A) + ((1+x)^10 - A)*((1+x)^11 - A)*((1+x)^12 - A)*((1+x)^13 - A)*((1+x)^14 - A) + ... + Product_{k=2*n..3*n-1} ((1+x)^k - A(x)) + ...
also
1 = 1/(1 + A) + (1+x)^2/((1 + (1+x)^2*A)*(1 + (1+x)^3*A)) + (1+x)^9/((1 + (1+x)^4*A)*(1 + (1+x)^5*A)*(1 + (1+x)^6*A)) + (1+x)^21/((1 + (1+x)^6*A)*(1 + (1+x)^7*A)*(1 + (1+x)^8*A)*(1 + (1+x)^9*A)) + (1+x)^38/((1 + (1+x)^8*A)*(1 + (1+x)^9*A)*(1 + (1+x)^10*A)*(1 + (1+x)^11*A)*(1 + (1+x)^12*A)) + ... + (1+x)^(n*(5*n-1)/2)/( Product_{k=2*n..3*n} (1 + (1+x)^k*A(x)) ) + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, prod(k=2*m, 3*m-1, (1+x)^k - Ser(A)) ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A206151 A070521 A292433 * A337764 A000889 A323597
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 15 2020
STATUS
approved