OFFSET
0,2
COMMENTS
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..200
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n>=0} Product_{k=2*n..3*n-1} ( (1+x)^k - A(x) ).
(2) 1 = Sum_{n>=0} (1+x)^(n*(5*n-1)/2) / Product_{k=2*n..3*n} (1 + (1+x)^k*A(x)).
a(n) ~ c * d^n * n^n / exp(n), where d = 7.8565736454589... and c = 0.30167199686... - Vaclav Kotesovec, Aug 12 2021
EXAMPLE
G.f.: A(x) = 1 + 2*x + 7*x^2 + 123*x^3 + 3434*x^4 + 127389*x^5 + 5800285*x^6 + 310671959*x^7 + 19065484061*x^8 + 1316721595692*x^9 + 101007119697478*x^10 + ...
Let A = A(x), then g.f. A(x) satisfies
1 = 1 + ((1+x)^2 - A) + ((1+x)^4 - A)*((1+x)^5 - A) + ((1+x)^6 - A)*((1+x)^7 - A)*((1+x)^8 - A) + ((1+x)^8 - A)*((1+x)^9 - A)*((1+x)^10 - A)*((1+x)^11 - A) + ((1+x)^10 - A)*((1+x)^11 - A)*((1+x)^12 - A)*((1+x)^13 - A)*((1+x)^14 - A) + ... + Product_{k=2*n..3*n-1} ((1+x)^k - A(x)) + ...
also
1 = 1/(1 + A) + (1+x)^2/((1 + (1+x)^2*A)*(1 + (1+x)^3*A)) + (1+x)^9/((1 + (1+x)^4*A)*(1 + (1+x)^5*A)*(1 + (1+x)^6*A)) + (1+x)^21/((1 + (1+x)^6*A)*(1 + (1+x)^7*A)*(1 + (1+x)^8*A)*(1 + (1+x)^9*A)) + (1+x)^38/((1 + (1+x)^8*A)*(1 + (1+x)^9*A)*(1 + (1+x)^10*A)*(1 + (1+x)^11*A)*(1 + (1+x)^12*A)) + ... + (1+x)^(n*(5*n-1)/2)/( Product_{k=2*n..3*n} (1 + (1+x)^k*A(x)) ) + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, prod(k=2*m, 3*m-1, (1+x)^k - Ser(A)) ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 15 2020
STATUS
approved