login
A302859
Primes of the form (k+1)!*k/2 + 1.
3
2, 7, 37, 241, 1801, 15121, 141121, 1451521, 16329601, 199584001, 37362124801, 566658892801, 9153720576001, 23112569077678080001, 186134520519971831808000001
OFFSET
1,1
COMMENTS
The next term, for k = 251 (see A301373), is
2566282033898537172673689833660299199318441\
47812028978290091772271674111238846647249346322032725585967946013083615\
44220440938904033673583084158870025082998875790404475054647299641196409\
72934112662249702715026203933143550590243427364871765801696382591273000\
77256511620017707120387621962694782616283336623216978502662268159966484\
36506095391239127788493879085200485514817503469381297494013097308996216\
58710310236069486145497777789215839354880000000000000000000000000000000\
0000000000000000000000000000001
LINKS
Maheswara Rao Valluri, Primes of the form p = 1 + n! Sum n, for some n ∈ N*, arXiv:1803.11461 [math.GM], 2018.
FORMULA
a(n) = A300559(A301373(n)) for all n >= 1; a(n) = A300559(n) for 1 <= n <= 10. - M. F. Hasler, Apr 15 2018
MATHEMATICA
Reap[For[k = 1, k <= 1000, k++, If[PrimeQ[p = (k+1)! k/2 + 1], Print["k = ", k, " p = ", p]; Sow[p]]]][[2, 1]]
CROSSREFS
Sequence in context: A020040 A125191 A300559 * A338182 A135164 A321087
KEYWORD
nonn
AUTHOR
EXTENSIONS
This sequence was originally submitted as A302174, then withdrawn, then reinstated with a new A-number by N. J. A. Sloane, Apr 14 2018
STATUS
approved