login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A321087
O.g.f. A(x) satisfies: [x^n] exp(n*A(x)) * (1 - n*x/(1-x)) = 0, for n > 0.
4
1, 2, 7, 37, 256, 2128, 20294, 216213, 2530522, 32165101, 440388103, 6454695553, 100786308221, 1669953080587, 29265149535076, 540884779563305, 10516595791609376, 214625521232021413, 4588068733776013386, 102541337542692407011, 2391813703854249362395, 58130860852912365134992, 1469860403455095402834628, 38611523432412179047238389
OFFSET
1,2
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
Compare to: [x^n] exp(n*G(x)) * (1 - n*x) = 0, for n > 0, when G(x) = x + x*G(x)*G'(x), where G(x)/x is the o.g.f. of A088716.
FORMULA
O.g.f. A(x) satisfies: A(x) = x/(1-x) + x*A(x)*A'(x).
EXAMPLE
O.g.f.: A(x) = x + 2*x^2 + 7*x^3 + 37*x^4 + 256*x^5 + 2128*x^6 + 20294*x^7 + 216213*x^8 + 2530522*x^9 + 32165101*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k/k! in exp(-n*A(x)) * (1 - n*x/(1-x)) begins:
n=1: [1, 0, 1, 28, 801, 30256, 1544425, 103604796, 8828789473, ...];
n=2: [1, 0, 0, 32, 1296, 55632, 2987200, 204441120, 17560833024, ...];
n=3: [1, 0, -3, 0, 1161, 67608, 4053645, 290790216, 25525161585, ...];
n=4: [1, 0, -8, -80, 0, 54304, 4333120, 344829888, 31719439360, ...];
n=5: [1, 0, -15, -220, -2655, 0, 3244825, 340694100, 34696521825, ...];
n=6: [1, 0, -24, -432, -7344, -115344, 0, 242169696, 32423666688, ...];
n=7: [1, 0, -35, -728, -14679, -316568, -6439475, 0, 22110305329, ...];
n=8: [1, 0, -48, -1120, -25344, -633792, -17406080, -451234944, 0, ...]; ...
in which the coefficient of x^n in row n forms a diagonal of zeros.
RELATED SERIES.
(a) Differential Equation.
O.g.f. A(x) satisfies: A(x) = x/(1-x) + x*A(x)*A'(x) where
A'(x) = 1 + 4*x + 21*x^2 + 148*x^3 + 1280*x^4 + 12768*x^5 + 142058*x^6 + ...
A(x)*A'(x) = x + 6*x^2 + 36*x^3 + 255*x^4 + 2127*x^5 + 20293*x^6 + 216212*x^7 + 2530521*x^8 + 32165100*x^9 + ...
so that A(x) - x*A(x)*A'(x) = x/(1-x).
(b) Exponentiation.
exp(A(x)) = 1 + x + 5*x^2/2! + 55*x^3/3! + 1129*x^4/4! + 37541*x^5/5! + 1813381*x^6/6! + 118181155*x^7/7! + 9890849585*x^8/8! + ...
exp(-A(x)) = 1 - x - 3*x^2/2! - 31*x^3/3! - 695*x^4/4! - 25221*x^5/5! - 1299779*x^6/6! - 88812907*x^7/7! - 7702826319*x^8/8! + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); m=#A; A[m] = -Vec( exp(m*x*Ser(A))*(1-m*x/(1-x +x^2*O(x^m))))[m+1]/m ); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A302859 A338182 A135164 * A072597 A322140 A339459
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 27 2018
STATUS
approved